org.apache.datasketches.hll.HarmonicNumbers Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.datasketches.hll;
/**
* @author Lee Rhodes
* @author Kevin Lang
*/
final class HarmonicNumbers {
/**
* This is the estimator you would use for flat bit map random accessed, similar to a Bloom filter.
* @param bitVectorLength the length of the bit vector in bits. Must be > 0.
* @param numBitsSet the number of bits set in this bit vector. Must be ≥ 0 and ≤
* bitVectorLength.
* @return the estimate.
*/
static double getBitMapEstimate(final int bitVectorLength, final int numBitsSet) {
return (bitVectorLength * (harmonicNumber(bitVectorLength)
- harmonicNumber(bitVectorLength - numBitsSet))); //converts to numZeros
}
//In C: two-registers.c Line 1170
private static final int NUM_EXACT_HARMONIC_NUMBERS = 25;
private static double[] tableOfExactHarmonicNumbers = {
0.0, // 0
1.0, // 1
1.5, // 2
11.0 / 6.0, // 3
25.0 / 12.0, // 4
137.0 / 60.0, // 5
49.0 / 20.0, // 6
363.0 / 140.0, // 7
761.0 / 280.0, // 8
7129.0 / 2520.0, // 9
7381.0 / 2520.0, // 10
83711.0 / 27720.0, // 11
86021.0 / 27720.0, // 12
1145993.0 / 360360.0, // 13
1171733.0 / 360360.0, // 14
1195757.0 / 360360.0, // 15
2436559.0 / 720720.0, // 16
42142223.0 / 12252240.0, // 17
14274301.0 / 4084080.0, // 18
275295799.0 / 77597520.0, // 19
55835135.0 / 15519504.0, // 20
18858053.0 / 5173168.0, // 21
19093197.0 / 5173168.0, // 22
444316699.0 / 118982864.0, // 23
1347822955.0 / 356948592.0 // 24
};
//In C: two-register.c Line 1202
private static final double EULER_MASCHERONI_CONSTANT = 0.577215664901532860606512090082;
private static double harmonicNumber(final long x_i) {
if (x_i < NUM_EXACT_HARMONIC_NUMBERS) {
return tableOfExactHarmonicNumbers[(int) x_i];
} else {
final double x = x_i;
final double invSq = 1.0 / (x * x);
double sum = Math.log(x) + EULER_MASCHERONI_CONSTANT + (1.0 / (2.0 * x));
/* note: the number of terms included from this series expansion is appropriate
for the size of the exact table (25) and the precision of doubles */
double pow = invSq; /* now n^-2 */
sum -= pow * (1.0 / 12.0);
pow *= invSq; /* now n^-4 */
sum += pow * (1.0 / 120.0);
pow *= invSq; /* now n^-6 */
sum -= pow * (1.0 / 252.0);
pow *= invSq; /* now n^-8 */
sum += pow * (1.0 / 240.0);
return sum;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy