org.apache.datasketches.hll.HllEstimators Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of datasketches-java Show documentation
Show all versions of datasketches-java Show documentation
Core sketch algorithms used alone and by other Java repositories in the DataSketches library.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.datasketches.hll;
import static org.apache.datasketches.hll.HllUtil.HLL_HIP_RSE_FACTOR;
import static org.apache.datasketches.hll.HllUtil.HLL_NON_HIP_RSE_FACTOR;
import static org.apache.datasketches.hll.HllUtil.MIN_LOG_K;
/**
* @author Lee Rhodes
* @author Kevin Lang
*/
class HllEstimators {
//HLL UPPER AND LOWER BOUNDS
/*
* The upper and lower bounds are not symmetric and thus are treated slightly differently.
* For the lower bound, when the unique count is <= k, LB >= numNonZeros, where
* numNonZeros = k - numAtCurMin AND curMin == 0.
*
* For HLL6 and HLL8, curMin is always 0 and numAtCurMin is initialized to k and is decremented
* down for each valid update until it reaches 0, where it stays. Thus, for these two
* isomorphs, when numAtCurMin = 0, means the true curMin is > 0 and the unique count must be
* greater than k.
*
* HLL4 always maintains both curMin and numAtCurMin dynamically. Nonetheless, the rules for
* the very small values <= k where curMin = 0 still apply.
*/
static final double hllLowerBound(final AbstractHllArray absHllArr, final int numStdDev) {
final int lgConfigK = absHllArr.lgConfigK;
final int configK = 1 << lgConfigK;
final double numNonZeros =
(absHllArr.getCurMin() == 0) ? configK - absHllArr.getNumAtCurMin() : configK;
final double estimate;
final double rseFactor;
final boolean oooFlag = absHllArr.isOutOfOrderFlag();
if (oooFlag) {
estimate = absHllArr.getCompositeEstimate();
rseFactor = HLL_NON_HIP_RSE_FACTOR;
} else {
estimate = absHllArr.getHipAccum();
rseFactor = HLL_HIP_RSE_FACTOR;
}
final double relErr = (lgConfigK > 12)
? (numStdDev * rseFactor) / Math.sqrt(configK)
: RelativeErrorTables.getRelErr(false, oooFlag, lgConfigK, numStdDev);
return Math.max(estimate / (1.0 + relErr), numNonZeros);
}
static final double hllUpperBound(final AbstractHllArray absHllArr, final int numStdDev) {
final int lgConfigK = absHllArr.lgConfigK;
final int configK = 1 << lgConfigK;
final double estimate;
final double rseFactor;
final boolean oooFlag = absHllArr.isOutOfOrderFlag();
if (oooFlag) {
estimate = absHllArr.getCompositeEstimate();
rseFactor = HLL_NON_HIP_RSE_FACTOR;
} else {
estimate = absHllArr.getHipAccum();
rseFactor = HLL_HIP_RSE_FACTOR;
}
final double relErr = (lgConfigK > 12)
? ((-1.0) * (numStdDev * rseFactor)) / Math.sqrt(configK)
: RelativeErrorTables.getRelErr(true, oooFlag, lgConfigK, numStdDev);
return estimate / (1.0 + relErr);
}
//THE HLL COMPOSITE ESTIMATOR
/**
* This is the (non-HIP) estimator.
* It is called "composite" because multiple estimators are pasted together.
* @param absHllArr an instance of the AbstractHllArray class.
* @return the composite estimate
*/
//In C: again-two-registers.c hhb_get_composite_estimate L1489
static final double hllCompositeEstimate(final AbstractHllArray absHllArr) {
final int lgConfigK = absHllArr.getLgConfigK();
final double rawEst = getHllRawEstimate(lgConfigK, absHllArr.getKxQ0() + absHllArr.getKxQ1());
final double[] xArr = CompositeInterpolationXTable.xArrs[lgConfigK - MIN_LOG_K];
final double yStride = CompositeInterpolationXTable.yStrides[lgConfigK - MIN_LOG_K];
final int xArrLen = xArr.length;
if (rawEst < xArr[0]) { return 0; }
final int xArrLenM1 = xArrLen - 1;
if (rawEst > xArr[xArrLenM1]) {
final double finalY = yStride * (xArrLenM1);
final double factor = finalY / xArr[xArrLenM1];
return rawEst * factor;
}
final double adjEst =
CubicInterpolation.usingXArrAndYStride(xArr, yStride, rawEst);
// We need to completely avoid the linear_counting estimator if it might have a crazy value.
// Empirical evidence suggests that the threshold 3*k will keep us safe if 2^4 <= k <= 2^21.
if (adjEst > (3 << lgConfigK)) { return adjEst; }
//Alternate call
//if ((adjEst > (3 << lgConfigK)) || ((curMin != 0) || (numAtCurMin == 0)) ) { return adjEst; }
final double linEst =
getHllBitMapEstimate(lgConfigK, absHllArr.getCurMin(), absHllArr.getNumAtCurMin());
// Bias is created when the value of an estimator is compared with a threshold to decide whether
// to use that estimator or a different one.
// We conjecture that less bias is created when the average of the two estimators
// is compared with the threshold. Empirical measurements support this conjecture.
final double avgEst = (adjEst + linEst) / 2.0;
// The following constants comes from empirical measurements of the crossover point
// between the average error of the linear estimator and the adjusted hll estimator
double crossOver = 0.64;
if (lgConfigK == 4) { crossOver = 0.718; }
else if (lgConfigK == 5) { crossOver = 0.672; }
return (avgEst > (crossOver * (1 << lgConfigK))) ? adjEst : linEst;
}
/**
* Estimator when N is small, roughly less than k log(k).
* Refer to Wikipedia: Coupon Collector Problem
* @param lgConfigK the current configured lgK of the sketch
* @param curMin the current minimum value of the HLL window
* @param numAtCurMin the current number of rows with the value curMin
* @return the very low range estimate
*/
//In C: again-two-registers.c hhb_get_improved_linear_counting_estimate L1274
private static final double getHllBitMapEstimate(
final int lgConfigK, final int curMin, final int numAtCurMin) {
final int configK = 1 << lgConfigK;
final int numUnhitBuckets = (curMin == 0) ? numAtCurMin : 0;
//This will eventually go away.
if (numUnhitBuckets == 0) {
return configK * Math.log(configK / 0.5);
}
final int numHitBuckets = configK - numUnhitBuckets;
return HarmonicNumbers.getBitMapEstimate(configK, numHitBuckets);
}
//In C: again-two-registers.c hhb_get_raw_estimate L1167
private static final double getHllRawEstimate(final int lgConfigK, final double kxqSum) {
final int configK = 1 << lgConfigK;
final double correctionFactor;
if (lgConfigK == 4) { correctionFactor = 0.673; }
else if (lgConfigK == 5) { correctionFactor = 0.697; }
else if (lgConfigK == 6) { correctionFactor = 0.709; }
else { correctionFactor = 0.7213 / (1.0 + (1.079 / configK)); }
final double hyperEst = (correctionFactor * configK * configK) / kxqSum;
return hyperEst;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy