org.apache.datasketches.quantiles.Util Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of datasketches-java Show documentation
Show all versions of datasketches-java Show documentation
Core sketch algorithms used alone and by other Java repositories in the DataSketches library.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.datasketches.quantiles;
import static java.lang.Math.abs;
import static java.lang.Math.ceil;
import static java.lang.Math.exp;
import static java.lang.Math.log;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.pow;
import static java.lang.Math.round;
import static org.apache.datasketches.Util.ceilingPowerOf2;
import static org.apache.datasketches.Util.isPowerOf2;
import static org.apache.datasketches.quantiles.DoublesSketch.MAX_K;
import static org.apache.datasketches.quantiles.DoublesSketch.MIN_K;
import static org.apache.datasketches.quantiles.PreambleUtil.COMPACT_FLAG_MASK;
import static org.apache.datasketches.quantiles.PreambleUtil.EMPTY_FLAG_MASK;
import static org.apache.datasketches.quantiles.PreambleUtil.ORDERED_FLAG_MASK;
import static org.apache.datasketches.quantiles.PreambleUtil.READ_ONLY_FLAG_MASK;
import static org.apache.datasketches.quantiles.PreambleUtil.extractFlags;
import org.apache.datasketches.Family;
import org.apache.datasketches.SketchesArgumentException;
import org.apache.datasketches.memory.Memory;
/**
* Utility class for quantiles sketches.
*
* This class contains a highly specialized sort called blockyTandemMergeSort().
* It also contains methods that are used while building histograms and other common
* functions.
*
* @author Lee Rhodes
*/
final class Util {
private Util() {}
/**
* The java line separator character as a String.
*/
static final String LS = System.getProperty("line.separator");
/**
* The tab character
*/
static final char TAB = '\t';
/**
* Computes the raw delta area between two quantile sketches for the
* {@link #kolmogorovSmirnovTest(DoublesSketch, DoublesSketch, double)
* Kolmogorov-Smirnov Test}
* method.
* @param sketch1 Input DoubleSketch 1
* @param sketch2 Input DoubleSketch 2
* @return the raw delta area between two quantile sketches
*/
public static double computeKSDelta(final DoublesSketch sketch1,
final DoublesSketch sketch2) {
final DoublesAuxiliary p = new DoublesAuxiliary(sketch1);
final DoublesAuxiliary q = new DoublesAuxiliary(sketch2);
final double[] pSamplesArr = p.auxSamplesArr_;
final double[] qSamplesArr = q.auxSamplesArr_;
final long[] pCumWtsArr = p.auxCumWtsArr_;
final long[] qCumWtsArr = q.auxCumWtsArr_;
final int pSamplesArrLen = pSamplesArr.length;
final int qSamplesArrLen = qSamplesArr.length;
final double n1 = sketch1.getN();
final double n2 = sketch2.getN();
//Compute D from the two distributions
double deltaArea = 0.0;
int i = getNextIndex(pSamplesArr, -1);
int j = getNextIndex(qSamplesArr, -1);
// We're done if either array reaches the end
while ((i < pSamplesArrLen) && (j < qSamplesArrLen)) {
final double pSample = pSamplesArr[i];
final double qSample = qSamplesArr[j];
final long pWt = pCumWtsArr[i];
final long qWt = qCumWtsArr[j];
final double pNormWt = pWt / n1;
final double qNormWt = qWt / n2;
final double pMinusQ = Math.abs(pNormWt - qNormWt);
final double curD = deltaArea;
deltaArea = Math.max(curD, pMinusQ);
//Increment i or j or both
if (pSample == qSample) {
i = getNextIndex(pSamplesArr, i);
j = getNextIndex(qSamplesArr, j);
} else if (pSample < qSample) {
i = getNextIndex(pSamplesArr, i);
} else {
j = getNextIndex(qSamplesArr, j);
}
}
//This is D, the delta difference in area of the two distributions
deltaArea = Math.max(deltaArea, Math.abs((pCumWtsArr[i] / n1) - (qCumWtsArr[j] / n2)));
return deltaArea;
}
/**
* Computes the adjusted delta area threshold for the
* {@link #kolmogorovSmirnovTest(DoublesSketch, DoublesSketch, double) Kolmogorov-Smirnov Test}
* method.
* This adjusts the computed threshold by the error epsilons of the two given sketches.
* See Kolmogorov–Smirnov Test
* @param sketch1 Input DoubleSketch 1
* @param sketch2 Input DoubleSketch 2
* @param tgtPvalue Target p-value. Typically .001 to .1, e.g., .05.
* @return the adjusted threshold to be compared with the raw delta area.
*/
public static double computeKSThreshold(final DoublesSketch sketch1,
final DoublesSketch sketch2,
final double tgtPvalue) {
final double r1 = sketch1.getRetainedItems();
final double r2 = sketch2.getRetainedItems();
final double alpha = tgtPvalue;
final double alphaFactor = Math.sqrt(-0.5 * Math.log(0.5 * alpha));
final double deltaAreaThreshold = alphaFactor * Math.sqrt((r1 + r2) / (r1 * r2));
final double eps1 = Util.getNormalizedRankError(sketch1.getK(), false);
final double eps2 = Util.getNormalizedRankError(sketch2.getK(), false);
final double adjDeltaAreaThreshold = deltaAreaThreshold + eps1 + eps2;
return adjDeltaAreaThreshold;
}
/**
* Performs the Kolmogorov-Smirnov Test between two quantiles sketches.
* Note: if the given sketches have insufficient data or if the sketch sizes are too small,
* this will return false.
* @param sketch1 Input DoubleSketch 1
* @param sketch2 Input DoubleSketch 2
* @param tgtPvalue Target p-value. Typically .001 to .1, e.g., .05.
* @return Boolean indicating whether we can reject the null hypothesis (that the sketches
* reflect the same underlying distribution) using the provided tgtPValue.
*/
public static boolean kolmogorovSmirnovTest(final DoublesSketch sketch1,
final DoublesSketch sketch2, final double tgtPvalue) {
final double delta = computeKSDelta(sketch1, sketch2);
final double thresh = computeKSThreshold(sketch1, sketch2, tgtPvalue);
return delta > thresh;
}
private static final int getNextIndex(final double[] samplesArr, final int stIdx) {
int idx = stIdx + 1;
final int samplesArrLen = samplesArr.length;
if (idx >= samplesArrLen) { return samplesArrLen; }
// if we have a sequence of equal values, use the last one of the sequence
final double val = samplesArr[idx];
int nxtIdx = idx + 1;
while ((nxtIdx < samplesArrLen) && (samplesArr[nxtIdx] == val)) {
idx = nxtIdx;
++nxtIdx;
}
return idx;
}
/**
* Gets the normalized rank error given k and pmf for the Quantiles DoubleSketch and ItemsSketch.
* @param k the configuation parameter
* @param pmf if true, returns the "double-sided" normalized rank error for the getPMF() function.
* Otherwise, it is the "single-sided" normalized rank error for all the other queries.
* @return if pmf is true, the normalized rank error for the getPMF() function.
* Otherwise, it is the "single-sided" normalized rank error for all the other queries.
*/
// constants were derived as the best fit to 99 percentile empirically measured max error in
// thousands of trials
public static double getNormalizedRankError(final int k, final boolean pmf) {
return pmf
? 1.854 / pow(k, 0.9657)
: 1.576 / pow(k, 0.9726);
}
/**
* Gets the approximate value of k to use given epsilon, the normalized rank error
* for the Quantiles DoubleSketch and ItemsSketch.
* @param epsilon the normalized rank error between zero and one.
* @param pmf if true, this function returns the value of k assuming the input epsilon
* is the desired "double-sided" epsilon for the getPMF() function. Otherwise, this function
* returns the value of k assuming the input epsilon is the desired "single-sided"
* epsilon for all the other queries.
* @return the value of k given a value of epsilon.
*/
// constants were derived as the best fit to 99 percentile empirically measured max error in
// thousands of trials
public static int getKFromEpsilon(final double epsilon, final boolean pmf) {
//Ensure that eps is >= than the lowest possible eps given MAX_K and pmf=false.
final double eps = max(epsilon, 6.395E-5);
final double kdbl = pmf
? exp(log(1.854 / eps) / 0.9657)
: exp(log(1.576 / eps) / 0.9726);
final double krnd = round(kdbl);
final double del = abs(krnd - kdbl);
//round to closest int if within 1 ppm of the int, otherwise use the ceiling.
final int k = (int) ((del < 1E-6) ? krnd : ceil(kdbl));
return max(MIN_K, min(MAX_K, k));
}
/**
* Checks the validity of the given value k
* @param k must be greater than 1 and less than 65536 and a power of 2.
*/
static void checkK(final int k) {
if ((k < MIN_K) || (k > MAX_K) || !isPowerOf2(k)) {
throw new SketchesArgumentException(
"K must be >= " + MIN_K + " and <= " + MAX_K + " and a power of 2: " + k);
}
}
/**
* Checks the validity of the given family ID
* @param familyID the given family ID
*/
static void checkFamilyID(final int familyID) {
final Family family = Family.idToFamily(familyID);
if (!family.equals(Family.QUANTILES)) {
throw new SketchesArgumentException(
"Possible corruption: Invalid Family: " + family.toString());
}
}
/**
* Checks the consistency of the flag bits and the state of preambleLong and the memory
* capacity and returns the empty state.
* @param preambleLongs the size of preamble in longs
* @param flags the flags field
* @param memCapBytes the memory capacity
* @return the value of the empty state
*/
static boolean checkPreLongsFlagsCap(final int preambleLongs, final int flags, final long memCapBytes) {
final boolean empty = (flags & EMPTY_FLAG_MASK) > 0; //Preamble flags empty state
final int minPre = Family.QUANTILES.getMinPreLongs(); //1
final int maxPre = Family.QUANTILES.getMaxPreLongs(); //2
final boolean valid = ((preambleLongs == minPre) && empty) || ((preambleLongs == maxPre) && !empty);
if (!valid) {
throw new SketchesArgumentException(
"Possible corruption: PreambleLongs inconsistent with empty state: " + preambleLongs);
}
checkHeapFlags(flags);
if (memCapBytes < (preambleLongs << 3)) {
throw new SketchesArgumentException(
"Possible corruption: Insufficient capacity for preamble: " + memCapBytes);
}
return empty;
}
/**
* Checks just the flags field of the preamble. Allowed flags are Read Only, Empty, Compact, and
* ordered.
* @param flags the flags field
*/
static void checkHeapFlags(final int flags) { //only used by checkPreLongsFlagsCap and test
final int allowedFlags =
READ_ONLY_FLAG_MASK | EMPTY_FLAG_MASK | COMPACT_FLAG_MASK | ORDERED_FLAG_MASK;
final int flagsMask = ~allowedFlags;
if ((flags & flagsMask) > 0) {
throw new SketchesArgumentException(
"Possible corruption: Invalid flags field: " + Integer.toBinaryString(flags));
}
}
/**
* Checks just the flags field of an input Memory object. Returns true for a compact
* sketch, false for an update sketch. Does not perform additional checks, including sketch
* family.
* @param srcMem the source Memory containing a sketch
* @return true if flags indicate a compact sketch, otherwise false
*/
static boolean checkIsCompactMemory(final Memory srcMem) {
// only reading so downcast is ok
final int flags = extractFlags(srcMem);
final int compactFlags = READ_ONLY_FLAG_MASK | COMPACT_FLAG_MASK;
return (flags & compactFlags) > 0;
}
/**
* Checks the sequential validity of the given array of double values.
* They must be unique, monotonically increasing and not NaN.
* @param values the given array of double values
*/
static final void checkSplitPointsOrder(final double[] values) {
if (values == null) {
throw new SketchesArgumentException("Values cannot be null.");
}
final int lenM1 = values.length - 1;
for (int j = 0; j < lenM1; j++) {
if (values[j] < values[j + 1]) { continue; }
throw new SketchesArgumentException(
"Values must be unique, monotonically increasing and not NaN.");
}
}
/**
* Checks that the given fractional rank: 0 ≤ frank ≤ 1.0.
* @param frank the given fractional rank.
*/
static final void checkFractionalRankBounds(final double frank) {
if ((frank < 0.0) || (frank > 1.0)) {
throw new SketchesArgumentException(
"Fractional rank must be >= 0 and <= 1.0: " + frank);
}
}
/**
* Returns the number of retained valid items in the sketch given k and n.
* @param k the given configured k of the sketch
* @param n the current number of items seen by the sketch
* @return the number of retained items in the sketch given k and n.
*/
static int computeRetainedItems(final int k, final long n) {
final int bbCnt = computeBaseBufferItems(k, n);
final long bitPattern = computeBitPattern(k, n);
final int validLevels = computeValidLevels(bitPattern);
return bbCnt + (validLevels * k);
}
/**
* Returns the total item capacity of an updatable, non-compact combined buffer
* given k and n. If total levels = 0, this returns the ceiling power of 2
* size for the base buffer or the MIN_BASE_BUF_SIZE, whichever is larger.
*
* @param k sketch parameter. This determines the accuracy of the sketch and the
* size of the updatable data structure, which is a function of k and n.
*
* @param n The number of items in the input stream
* @return the current item capacity of the combined buffer
*/
static int computeCombinedBufferItemCapacity(final int k, final long n) {
final int totLevels = computeNumLevelsNeeded(k, n);
if (totLevels == 0) {
final int bbItems = computeBaseBufferItems(k, n);
return Math.max(2 * DoublesSketch.MIN_K, ceilingPowerOf2(bbItems));
}
return (2 + totLevels) * k;
}
/**
* Computes the number of valid levels above the base buffer
* @param bitPattern the bit pattern
* @return the number of valid levels above the base buffer
*/
static int computeValidLevels(final long bitPattern) {
return Long.bitCount(bitPattern);
}
/**
* Computes the total number of logarithmic levels above the base buffer given the bitPattern.
* @param bitPattern the given bit pattern
* @return the total number of logarithmic levels above the base buffer
*/
static int computeTotalLevels(final long bitPattern) {
return hiBitPos(bitPattern) + 1;
}
/**
* Computes the total number of logarithmic levels above the base buffer given k and n.
* This is equivalent to max(floor(lg(n/k), 0).
* Returns zero if n is less than 2 * k.
* @param k the configured size of the sketch
* @param n the total values presented to the sketch.
* @return the total number of levels needed.
*/
static int computeNumLevelsNeeded(final int k, final long n) {
return 1 + hiBitPos(n / (2L * k));
}
/**
* Computes the number of base buffer items given k, n
* @param k the configured size of the sketch
* @param n the total values presented to the sketch
* @return the number of base buffer items
*/
static int computeBaseBufferItems(final int k, final long n) {
return (int) (n % (2L * k));
}
/**
* Computes the levels bit pattern given k, n.
* This is computed as n / (2*k).
* @param k the configured size of the sketch
* @param n the total values presented to the sketch.
* @return the levels bit pattern
*/
static long computeBitPattern(final int k, final long n) {
return n / (2L * k);
}
/**
* Returns the log_base2 of x
* @param x the given x
* @return the log_base2 of x
*/
static double lg(final double x) {
return ( Math.log(x) / Math.log(2.0) );
}
/**
* Zero-based position of the highest one-bit of the given long.
* Returns minus one if num is zero.
* @param num the given long
* @return Zero-based position of the highest one-bit of the given long
*/
static int hiBitPos(final long num) {
return 63 - Long.numberOfLeadingZeros(num);
}
/**
* Returns the zero-based bit position of the lowest zero bit of bits starting at
* startingBit. If input is all ones, this returns 64.
* @param bits the input bits as a long
* @param startingBit the zero-based starting bit position. Only the low 6 bits are used.
* @return the zero-based bit position of the lowest zero bit starting at startingBit.
*/
static int lowestZeroBitStartingAt(final long bits, final int startingBit) {
int pos = startingBit & 0X3F;
long myBits = bits >>> pos;
while ((myBits & 1L) != 0) {
myBits = myBits >>> 1;
pos++;
}
return pos;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy