Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.aggregation.histogram;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonValue;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import org.apache.druid.common.config.NullHandling;
import org.apache.druid.java.util.common.ISE;
import org.apache.druid.java.util.common.StringUtils;
import javax.annotation.Nullable;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Objects;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class FixedBucketsHistogram
{
public static final byte SERIALIZATION_VERSION = 0x01;
/**
* Serialization header format:
*
* byte: serialization version, must be 0x01
* byte: encoding mode, 0x01 for full, 0x02 for sparse
*/
public static final int SERDE_HEADER_SIZE = Byte.BYTES +
Byte.BYTES;
/**
* Common serialization fields format:
*
* double: lowerLimit
* double: upperLimit
* int: numBuckets
* byte: outlier handling mode (0x00 for `ignore`, 0x01 for `overflow`, and 0x02 for `clip`)
* long: count, total number of values contained in the histogram, excluding outliers
* long: lowerOutlierCount
* long: upperOutlierCount
* long: missingValueCount
* double: max
* double: min
*/
public static final int COMMON_FIELDS_SIZE = Double.BYTES +
Double.BYTES +
Integer.BYTES +
Byte.BYTES +
Long.BYTES * 4 +
Double.BYTES +
Double.BYTES;
/**
* Full serialization format:
*
* serialization header
* common fields
* array of longs: bucket counts for the histogram
*/
public static final byte FULL_ENCODING_MODE = 0x01;
/**
* Sparse serialization format:
*
* serialization header
* common fields
* int: number of following (bucketNum, count) pairs
* sequence of (int, long) pairs:
* int: bucket number
* count: bucket count
*/
public static final byte SPARSE_ENCODING_MODE = 0x02;
/**
* Determines how the histogram handles outliers.
*
* Ignore: do not track outliers at all
* Overflow: track outlier counts in upperOutlierCount and lowerOutlierCount.
* The min and max do not take outlier values into account.
* Clip: Clip outlier values to either the start or end of the histogram's range, adding them to the first or
* last bucket, respectively. The min and max are affected by such clipped outlier values.
*/
public enum OutlierHandlingMode
{
IGNORE,
OVERFLOW,
CLIP;
@JsonValue
@Override
public String toString()
{
return StringUtils.toLowerCase(this.name());
}
@JsonCreator
public static OutlierHandlingMode fromString(String name)
{
return valueOf(StringUtils.toUpperCase(name));
}
public byte[] getCacheKey()
{
return new byte[] {(byte) this.ordinal()};
}
}
@JsonIgnore
private final OutlierHandler outlierHandler;
/**
* Locking is needed when the non-buffer aggregator is used within a realtime ingestion task.
*
* The following areas are locked:
* - Add value
* - Merge histograms
* - Compute percentiles
* - Serialization
*/
@JsonIgnore
private final ReadWriteLock readWriteLock;
private double lowerLimit;
private double upperLimit;
private int numBuckets;
private long upperOutlierCount = 0;
private long lowerOutlierCount = 0;
private long missingValueCount = 0;
private long[] histogram;
private double bucketSize;
private OutlierHandlingMode outlierHandlingMode;
private long count = 0;
private double max = Double.NEGATIVE_INFINITY;
private double min = Double.POSITIVE_INFINITY;
public FixedBucketsHistogram(
double lowerLimit,
double upperLimit,
int numBuckets,
OutlierHandlingMode outlierHandlingMode
)
{
Preconditions.checkArgument(
upperLimit > lowerLimit,
"Upper limit [%s] must be greater than lower limit [%s].",
upperLimit,
lowerLimit
);
Preconditions.checkArgument(
numBuckets > 0,
"numBuckets must be > 0, got [%s] instead.",
numBuckets
);
this.lowerLimit = lowerLimit;
this.upperLimit = upperLimit;
this.numBuckets = numBuckets;
this.outlierHandlingMode = outlierHandlingMode;
this.histogram = new long[numBuckets];
this.bucketSize = (upperLimit - lowerLimit) / numBuckets;
this.readWriteLock = new ReentrantReadWriteLock(true);
this.outlierHandler = makeOutlierHandler();
}
@VisibleForTesting
protected FixedBucketsHistogram(
double lowerLimit,
double upperLimit,
int numBuckets,
OutlierHandlingMode outlierHandlingMode,
long[] histogram,
long count,
double max,
double min,
long lowerOutlierCount,
long upperOutlierCount,
long missingValueCount
)
{
this.lowerLimit = lowerLimit;
this.upperLimit = upperLimit;
this.numBuckets = numBuckets;
this.outlierHandlingMode = outlierHandlingMode;
this.histogram = histogram;
this.count = count;
this.max = max;
this.min = min;
this.upperOutlierCount = upperOutlierCount;
this.lowerOutlierCount = lowerOutlierCount;
this.missingValueCount = missingValueCount;
this.bucketSize = (upperLimit - lowerLimit) / numBuckets;
this.readWriteLock = new ReentrantReadWriteLock(true);
this.outlierHandler = makeOutlierHandler();
}
@VisibleForTesting
public FixedBucketsHistogram getCopy()
{
// only used for tests/benchmarks
return new FixedBucketsHistogram(
lowerLimit,
upperLimit,
numBuckets,
outlierHandlingMode,
Arrays.copyOf(histogram, histogram.length),
count,
max,
min,
lowerOutlierCount,
upperOutlierCount,
missingValueCount
);
}
@JsonProperty
public double getLowerLimit()
{
return lowerLimit;
}
@JsonProperty
public double getUpperLimit()
{
return upperLimit;
}
@JsonProperty
public int getNumBuckets()
{
return numBuckets;
}
@JsonProperty
public long getUpperOutlierCount()
{
return upperOutlierCount;
}
@JsonProperty
public long getLowerOutlierCount()
{
return lowerOutlierCount;
}
@JsonProperty
public long getMissingValueCount()
{
return missingValueCount;
}
@JsonProperty
public long[] getHistogram()
{
return histogram;
}
@JsonProperty
public double getBucketSize()
{
return bucketSize;
}
@JsonProperty
public long getCount()
{
return count;
}
@JsonProperty
public double getMax()
{
return max;
}
@JsonProperty
public double getMin()
{
return min;
}
@JsonProperty
public OutlierHandlingMode getOutlierHandlingMode()
{
return outlierHandlingMode;
}
@Override
public String toString()
{
return "{" +
"lowerLimit=" + lowerLimit +
", upperLimit=" + upperLimit +
", numBuckets=" + numBuckets +
", upperOutlierCount=" + upperOutlierCount +
", lowerOutlierCount=" + lowerOutlierCount +
", missingValueCount=" + missingValueCount +
", histogram=" + Arrays.toString(histogram) +
", outlierHandlingMode=" + outlierHandlingMode +
", count=" + count +
", max=" + max +
", min=" + min +
'}';
}
@Override
public boolean equals(Object o)
{
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
FixedBucketsHistogram that = (FixedBucketsHistogram) o;
return Double.compare(that.getLowerLimit(), getLowerLimit()) == 0 &&
Double.compare(that.getUpperLimit(), getUpperLimit()) == 0 &&
getNumBuckets() == that.getNumBuckets() &&
getUpperOutlierCount() == that.getUpperOutlierCount() &&
getLowerOutlierCount() == that.getLowerOutlierCount() &&
getMissingValueCount() == that.getMissingValueCount() &&
Double.compare(that.getBucketSize(), getBucketSize()) == 0 &&
getCount() == that.getCount() &&
Double.compare(that.getMax(), getMax()) == 0 &&
Double.compare(that.getMin(), getMin()) == 0 &&
Arrays.equals(getHistogram(), that.getHistogram()) &&
getOutlierHandlingMode() == that.getOutlierHandlingMode();
}
@Override
public int hashCode()
{
return Objects.hash(
getLowerLimit(),
getUpperLimit(),
getNumBuckets(),
getUpperOutlierCount(),
getLowerOutlierCount(),
getMissingValueCount(),
Arrays.hashCode(getHistogram()),
getBucketSize(),
getOutlierHandlingMode(),
getCount(),
getMax(),
getMin()
);
}
public ReadWriteLock getReadWriteLock()
{
return readWriteLock;
}
/**
* Add a value to the histogram, using the outlierHandler to account for outliers.
*
* @param value value to be added.
*/
public void add(
double value
)
{
readWriteLock.writeLock().lock();
try {
if (value < lowerLimit) {
outlierHandler.handleOutlierAdd(false);
return;
} else if (value >= upperLimit) {
outlierHandler.handleOutlierAdd(true);
return;
}
count += 1;
if (value > max) {
max = value;
}
if (value < min) {
min = value;
}
double valueRelativeToRange = value - lowerLimit;
int targetBucket = (int) (valueRelativeToRange / bucketSize);
if (targetBucket >= histogram.length) {
targetBucket = histogram.length - 1;
}
histogram[targetBucket] += 1;
}
finally {
readWriteLock.writeLock().unlock();
}
}
/**
* Called when the histogram encounters a null value.
*/
public void incrementMissing()
{
readWriteLock.writeLock().lock();
try {
missingValueCount++;
}
finally {
readWriteLock.writeLock().unlock();
}
}
/**
* Merge another datapoint into this one. The other datapoint could be
* - base64 encoded string of {@code FixedBucketsHistogram}
* - {@code FixedBucketsHistogram} object
* - Numeric value
*
* @param val
*/
@VisibleForTesting
public void combine(@Nullable Object val)
{
if (val == null) {
if (NullHandling.replaceWithDefault()) {
add(NullHandling.defaultDoubleValue());
} else {
incrementMissing();
}
} else if (val instanceof String) {
combineHistogram(fromBase64((String) val));
} else if (val instanceof FixedBucketsHistogram) {
combineHistogram((FixedBucketsHistogram) val);
} else if (val instanceof Number) {
add(((Number) val).doubleValue());
} else {
throw new ISE("Unknown class for object: " + val.getClass());
}
}
/**
* Merge another histogram into this one. Only the state of this histogram is updated.
*
* If the two histograms have identical buckets, a simpler algorithm is used.
*
* @param otherHistogram
*/
public void combineHistogram(FixedBucketsHistogram otherHistogram)
{
if (otherHistogram == null) {
return;
}
readWriteLock.writeLock().lock();
otherHistogram.getReadWriteLock().readLock().lock();
try {
missingValueCount += otherHistogram.getMissingValueCount();
if (bucketSize == otherHistogram.getBucketSize() &&
lowerLimit == otherHistogram.getLowerLimit() &&
upperLimit == otherHistogram.getUpperLimit()) {
combineHistogramSameBuckets(otherHistogram);
} else {
combineHistogramDifferentBuckets(otherHistogram);
}
}
finally {
readWriteLock.writeLock().unlock();
otherHistogram.getReadWriteLock().readLock().unlock();
}
}
/**
* Merge another histogram that has the same range and same buckets.
*
* @param otherHistogram
*/
private void combineHistogramSameBuckets(FixedBucketsHistogram otherHistogram)
{
long[] otherHistogramArray = otherHistogram.getHistogram();
for (int i = 0; i < numBuckets; i++) {
histogram[i] += otherHistogramArray[i];
}
count += otherHistogram.getCount();
max = Math.max(max, otherHistogram.getMax());
min = Math.min(min, otherHistogram.getMin());
outlierHandler.handleOutliersForCombineSameBuckets(otherHistogram);
}
/**
* Merge another histogram that has different buckets from mine.
*
* First, check if the other histogram falls entirely outside of my defined range. If so, call the appropriate
* function for optimized handling.
*
* Otherwise, this merges the histograms with a more general function.
*
* @param otherHistogram
*/
private void combineHistogramDifferentBuckets(FixedBucketsHistogram otherHistogram)
{
if (otherHistogram.getLowerLimit() >= upperLimit) {
outlierHandler.handleOutliersCombineDifferentBucketsAllUpper(otherHistogram);
} else if (otherHistogram.getUpperLimit() <= lowerLimit) {
outlierHandler.handleOutliersCombineDifferentBucketsAllLower(otherHistogram);
} else {
simpleInterpolateMerge(otherHistogram);
}
}
/**
* Get a sum of bucket counts from either the start of a histogram's range or end, up to a specified cutoff value.
*
* For example, if I have the following histogram with a range of 0-40, with 4 buckets and
* per-bucket counts of 5, 2, 10, and 7:
*
* | 5 | 2 | 24 | 7 |
* 0 10 20 30 40
*
* Calling this function with a cutoff of 25 and fromStart = true would:
* - Sum the first two bucket counts 5 + 2
* - Since the cutoff falls in the third bucket, multiply the third bucket's count by the fraction of the bucket range
* covered by the cutoff, in this case the fraction is ((25 - 20) / 10) = 0.5
* - The total count returned is 5 + 2 + 12
*
* @param cutoff Cutoff point within the histogram's range
* @param fromStart If true, sum the bucket counts starting from the beginning of the histogram range.
* If false, sum from the other direction, starting from the end of the histogram range.
* @return Sum of bucket counts up to the cutoff point
*/
private double getCumulativeCount(double cutoff, boolean fromStart)
{
int cutoffBucket = (int) ((cutoff - lowerLimit) / bucketSize);
double count = 0;
if (fromStart) {
for (int i = 0; i <= cutoffBucket; i++) {
if (i == cutoffBucket) {
double bucketStart = i * bucketSize + lowerLimit;
double partialCount = ((cutoff - bucketStart) / bucketSize) * histogram[i];
count += partialCount;
} else {
count += histogram[i];
}
}
} else {
for (int i = cutoffBucket; i < histogram.length; i++) {
if (i == cutoffBucket) {
double bucketEnd = ((i + 1) * bucketSize) + lowerLimit;
double partialCount = ((bucketEnd - cutoff) / bucketSize) * histogram[i];
count += partialCount;
} else {
count += histogram[i];
}
}
}
return count;
}
/**
* Combines this histogram with another histogram by "rebucketing" the other histogram to match our bucketing scheme,
* assuming that the original input values are uniformly distributed within each bucket in the other histogram.
*
* Suppose we have the following histograms:
*
* | 0 | 0 | 0 | 0 | 0 | 0 |
* 0 1 2 3 4 5 6
*
* | 4 | 4 | 0 | 0 |
* 0 3 6 9 12
*
* We will preserve the bucketing scheme of our histogram, and determine what cut-off points within the other
* histogram align with our bucket boundaries.
*
* Using this example, we would effectively rebucket the second histogram to the following:
*
* | 1.333 | 1.333 | 1.333 | 1.333 | 1.333 | 1.333 | 0 | 0 | 0 | 0 | 0 | 0 |
* 0 1 2 3 4 5 6 7 8 9 10 11 12
*
* The 0-3 bucket in the second histogram is rebucketed across new buckets with size 1, with the original frequency 4
* multiplied by the fraction (new bucket size / original bucket size), in this case 1/3.
*
* These new rebucketed counts are then added to the base histogram's buckets, with rounding, resulting in:
*
* | 1 | 1 | 1 | 1 | 1 | 1 |
* 0 1 2 3 4 5 6
*
* @param otherHistogram other histogram to be merged
*/
private void simpleInterpolateMerge(FixedBucketsHistogram otherHistogram)
{
double rangeStart = Math.max(lowerLimit, otherHistogram.getLowerLimit());
double rangeEnd = Math.min(upperLimit, otherHistogram.getUpperLimit());
int myCurBucket = (int) ((rangeStart - lowerLimit) / bucketSize);
double myNextCursorBoundary = (myCurBucket + 1) * bucketSize + lowerLimit;
double myCursor = rangeStart;
int theirCurBucket = (int) ((rangeStart - otherHistogram.getLowerLimit()) / otherHistogram.getBucketSize());
double theirNextCursorBoundary = (theirCurBucket + 1) * otherHistogram.getBucketSize() + otherHistogram.getLowerLimit();
double theirCursor = rangeStart;
double intraBucketStride = otherHistogram.getBucketSize() / otherHistogram.getHistogram()[theirCurBucket];
myNextCursorBoundary = Math.min(myNextCursorBoundary, rangeEnd);
theirNextCursorBoundary = Math.min(theirNextCursorBoundary, rangeEnd);
outlierHandler.simpleInterpolateMergeHandleOutliers(otherHistogram, rangeStart, rangeEnd);
double theirCurrentLowerBucketBoundary = theirCurBucket * otherHistogram.getBucketSize() + otherHistogram.getLowerLimit();
while (myCursor < rangeEnd) {
double needToConsume = myNextCursorBoundary - myCursor;
double canConsumeFromOtherBucket = theirNextCursorBoundary - theirCursor;
double toConsume = Math.min(needToConsume, canConsumeFromOtherBucket);
// consume one of our bucket's worth of data from the other histogram
while (needToConsume > 0) {
double fractional = toConsume / otherHistogram.getBucketSize();
double fractionalCount = otherHistogram.getHistogram()[theirCurBucket] * fractional;
if (Math.round(fractionalCount) > 0) {
// in this chunk from the other histogram bucket, calculate min and max interpolated values that would be added
double minStride = Math.ceil(
(theirCursor - (theirCurBucket * otherHistogram.getBucketSize() + otherHistogram.getLowerLimit()))
/ intraBucketStride
);
minStride *= intraBucketStride;
minStride += theirCurrentLowerBucketBoundary;
if (minStride >= theirCursor) {
min = Math.min(minStride, min);
max = Math.max(minStride, max);
}
double maxStride = Math.floor(
(theirCursor + toConsume - (theirCurBucket * otherHistogram.getBucketSize()
+ otherHistogram.getLowerLimit())) / intraBucketStride
);
maxStride *= intraBucketStride;
maxStride += theirCurrentLowerBucketBoundary;
if (maxStride < theirCursor + toConsume) {
max = Math.max(maxStride, max);
min = Math.min(maxStride, min);
}
}
histogram[myCurBucket] += Math.round(fractionalCount);
count += Math.round(fractionalCount);
needToConsume -= toConsume;
theirCursor += toConsume;
myCursor += toConsume;
if (theirCursor >= rangeEnd) {
break;
}
// we've crossed buckets in the other histogram
if (theirCursor >= theirNextCursorBoundary) {
theirCurBucket += 1;
intraBucketStride = otherHistogram.getBucketSize() / otherHistogram.getHistogram()[theirCurBucket];
theirCurrentLowerBucketBoundary = theirCurBucket * otherHistogram.getBucketSize() + otherHistogram.getLowerLimit();
theirNextCursorBoundary = (theirCurBucket + 1) * otherHistogram.getBucketSize() + otherHistogram.getLowerLimit();
theirNextCursorBoundary = Math.min(theirNextCursorBoundary, rangeEnd);
}
canConsumeFromOtherBucket = theirNextCursorBoundary - theirCursor;
toConsume = Math.min(needToConsume, canConsumeFromOtherBucket);
}
if (theirCursor >= rangeEnd) {
break;
}
myCurBucket += 1;
myNextCursorBoundary = (myCurBucket + 1) * bucketSize + lowerLimit;
myNextCursorBoundary = Math.min(myNextCursorBoundary, rangeEnd);
}
}
/**
* Estimate percentiles from the histogram bucket counts, using the following process:
*
* Suppose we have the following histogram with range 0-10, with bucket size = 2, and the following counts:
*
* | 0 | 1 | 2 | 4 | 0 |
* 0 2 4 6 8 10
*
* If we wanted to estimate the 75th percentile:
* 1. Find the frequency cut-off for the 75th percentile: 0.75 * 7 (the total count for the entire histogram) = 5.25
* 2. Find the bucket for the cut-off point: in this case, the 6-8 bucket, since the cumulative frequency
* from 0-6 is 3 and cumulative frequency from 0-8 is 7
* 3. The percentile estimate is L + F * W, where:
*
* L = lower boundary of target bucket
* F = (frequency cut-off - cumulative frequency up to target bucket) / frequency of target bucket
* W = bucket size
*
* In this case:
* 75th percentile estimate = 6 + ((5.25 - 3) / 4) * 2 = 7.125
*
* Based off PercentileBuckets code from Netflix Spectator:
* - https://github.com/Netflix/spectator/blob/0d083da3a60221de9cc710e314b0749e47a40e67/spectator-api/src/main/java/com/netflix/spectator/api/histogram/PercentileBuckets.java#L105
*
* @param pcts Array of percentiles to be estimated. Must be sorted in ascending order.
* @return Estimates of percentile values, in the same order as the provided input.
*/
public float[] percentilesFloat(double[] pcts)
{
readWriteLock.readLock().lock();
try {
float[] results = new float[pcts.length];
long total = count;
int pctIdx = 0;
long prev = 0;
double prevP = 0.0;
double prevB = lowerLimit;
for (int i = 0; i < numBuckets; ++i) {
long next = prev + histogram[i];
double nextP = 100.0 * next / total;
double nextB = (i + 1) * bucketSize + lowerLimit;
while (pctIdx < pcts.length && nextP >= pcts[pctIdx]) {
double f = (pcts[pctIdx] - prevP) / (nextP - prevP);
results[pctIdx] = (float) (f * (nextB - prevB) + prevB);
++pctIdx;
}
if (pctIdx >= pcts.length) {
break;
}
prev = next;
prevP = nextP;
prevB = nextB;
}
return results;
}
finally {
readWriteLock.readLock().unlock();
}
}
/**
* Encode the serialized form generated by toBytes() in Base64, used as the JSON serialization format.
*
* @return Base64 serialization
*/
@JsonValue
public String toBase64()
{
byte[] asBytes = toBytes();
return StringUtils.fromUtf8(StringUtils.encodeBase64(asBytes));
}
/**
* Serialize the histogram, with two possible encodings chosen based on the number of filled buckets:
*
* Full: Store the histogram buckets as an array of bucket counts, with size numBuckets
* Sparse: Store the histogram buckets as a list of (bucketNum, count) pairs.
*/
public byte[] toBytes()
{
readWriteLock.readLock().lock();
try {
int nonEmptyBuckets = getNonEmptyBucketCount();
if (nonEmptyBuckets < (numBuckets / 2)) {
return toBytesSparse(nonEmptyBuckets);
} else {
return toBytesFull(true);
}
}
finally {
readWriteLock.readLock().unlock();
}
}
/**
* Write a serialization header containing the serde version byte and full/sparse encoding mode byte.
*
* This header is not needed when serializing the histogram for localized internal use within the
* buffer aggregator implementation.
*
* @param buf Destination buffer
* @param mode Full or sparse mode
*/
private void writeByteBufferSerdeHeader(ByteBuffer buf, byte mode)
{
buf.put(SERIALIZATION_VERSION);
buf.put(mode);
}
/**
* Serializes histogram fields that are common to both the full and sparse encoding modes.
*
* @param buf Destination buffer
*/
private void writeByteBufferCommonFields(ByteBuffer buf)
{
buf.putDouble(lowerLimit);
buf.putDouble(upperLimit);
buf.putInt(numBuckets);
buf.put((byte) outlierHandlingMode.ordinal());
buf.putLong(count);
buf.putLong(lowerOutlierCount);
buf.putLong(upperOutlierCount);
buf.putLong(missingValueCount);
buf.putDouble(max);
buf.putDouble(min);
}
/**
* Serialize the histogram in full encoding mode.
*
* For efficiency, the header is not written when the histogram
* is serialized for localized internal use within the buffer aggregator implementation.
*
* @param withHeader If true, include the serialization header
* @return Serialized histogram with full encoding
*/
public byte[] toBytesFull(boolean withHeader)
{
int size = getFullStorageSize(numBuckets);
if (withHeader) {
size += SERDE_HEADER_SIZE;
}
ByteBuffer buf = ByteBuffer.allocate(size);
writeByteBufferFull(buf, withHeader);
return buf.array();
}
/**
* Helper method for toBytesFull
*
* @param buf Destination buffer
* @param withHeader If true, include the serialization header
*/
private void writeByteBufferFull(ByteBuffer buf, boolean withHeader)
{
if (withHeader) {
writeByteBufferSerdeHeader(buf, FULL_ENCODING_MODE);
}
writeByteBufferCommonFields(buf);
buf.asLongBuffer().put(histogram);
buf.position(buf.position() + Long.BYTES * histogram.length);
}
/**
* Serialize the histogram in sparse encoding mode.
*
* The serialization header is always written, since the sparse encoding is only used in situations where the
* header is required.
*
* @param nonEmptyBuckets Number of non-empty buckets in the histogram
* @return Serialized histogram with sparse encoding
*/
public byte[] toBytesSparse(int nonEmptyBuckets)
{
int size = SERDE_HEADER_SIZE + getSparseStorageSize(nonEmptyBuckets);
ByteBuffer buf = ByteBuffer.allocate(size);
writeByteBufferSparse(buf, nonEmptyBuckets);
return buf.array();
}
/**
* Helper method for toBytesSparse
*
* @param buf Destination buffer
* @param nonEmptyBuckets Number of non-empty buckets in the histogram
*/
public void writeByteBufferSparse(ByteBuffer buf, int nonEmptyBuckets)
{
writeByteBufferSerdeHeader(buf, SPARSE_ENCODING_MODE);
writeByteBufferCommonFields(buf);
buf.putInt(nonEmptyBuckets);
int bucketsWritten = 0;
for (int i = 0; i < numBuckets; i++) {
if (histogram[i] > 0) {
buf.putInt(i);
buf.putLong(histogram[i]);
bucketsWritten += 1;
}
if (bucketsWritten == nonEmptyBuckets) {
break;
}
}
}
/**
* Deserialize a Base64-encoded histogram, used when deserializing from JSON (such as when transferring query results)
* or when ingesting a pre-computed histogram.
*
* @param encodedHistogram Base64-encoded histogram
* @return Deserialized object
*/
public static FixedBucketsHistogram fromBase64(String encodedHistogram)
{
byte[] asBytes = StringUtils.decodeBase64(encodedHistogram.getBytes(StandardCharsets.UTF_8));
return fromBytes(asBytes);
}
/**
* General deserialization method for FixedBucketsHistogram.
*
* @param bytes
* @return
*/
public static FixedBucketsHistogram fromBytes(byte[] bytes)
{
ByteBuffer buf = ByteBuffer.wrap(bytes);
return fromByteBuffer(buf);
}
/**
* Deserialization helper method
*
* @param buf Source buffer containing serialized histogram
* @return Deserialized object
*/
public static FixedBucketsHistogram fromByteBuffer(ByteBuffer buf)
{
byte serializationVersion = buf.get();
Preconditions.checkArgument(
serializationVersion == SERIALIZATION_VERSION,
StringUtils.format("Only serialization version %s is supported.", SERIALIZATION_VERSION)
);
byte mode = buf.get();
if (mode == FULL_ENCODING_MODE) {
return fromByteBufferFullNoSerdeHeader(buf);
} else if (mode == SPARSE_ENCODING_MODE) {
return fromBytesSparse(buf);
} else {
throw new ISE("Invalid histogram serde mode: %s", mode);
}
}
/**
* Helper method for deserializing histograms with full encoding mode. Assumes that the serialization header is not
* present or has already been read.
*
* @param buf Source buffer containing serialized full-encoding histogram.
* @return Deserialized object
*/
protected static FixedBucketsHistogram fromByteBufferFullNoSerdeHeader(ByteBuffer buf)
{
double lowerLimit = buf.getDouble();
double upperLimit = buf.getDouble();
int numBuckets = buf.getInt();
OutlierHandlingMode outlierHandlingMode = OutlierHandlingMode.values()[buf.get()];
long count = buf.getLong();
long lowerOutlierCount = buf.getLong();
long upperOutlierCount = buf.getLong();
long missingValueCount = buf.getLong();
double max = buf.getDouble();
double min = buf.getDouble();
long[] histogram = new long[numBuckets];
buf.asLongBuffer().get(histogram);
buf.position(buf.position() + Long.BYTES * histogram.length);
return new FixedBucketsHistogram(
lowerLimit,
upperLimit,
numBuckets,
outlierHandlingMode,
histogram,
count,
max,
min,
lowerOutlierCount,
upperOutlierCount,
missingValueCount
);
}
/**
* Helper method for deserializing histograms with sparse encoding mode. Assumes that the serialization header is not
* present or has already been read.
*
* @param buf Source buffer containing serialized sparse-encoding histogram.
* @return Deserialized object
*/
private static FixedBucketsHistogram fromBytesSparse(ByteBuffer buf)
{
double lowerLimit = buf.getDouble();
double upperLimit = buf.getDouble();
int numBuckets = buf.getInt();
OutlierHandlingMode outlierHandlingMode = OutlierHandlingMode.values()[buf.get()];
long count = buf.getLong();
long lowerOutlierCount = buf.getLong();
long upperOutlierCount = buf.getLong();
long missingValueCount = buf.getLong();
double max = buf.getDouble();
double min = buf.getDouble();
int nonEmptyBuckets = buf.getInt();
long[] histogram = new long[numBuckets];
for (int i = 0; i < nonEmptyBuckets; i++) {
int bucket = buf.getInt();
long bucketCount = buf.getLong();
histogram[bucket] = bucketCount;
}
return new FixedBucketsHistogram(
lowerLimit,
upperLimit,
numBuckets,
outlierHandlingMode,
histogram,
count,
max,
min,
lowerOutlierCount,
upperOutlierCount,
missingValueCount
);
}
/**
* Compute the size in bytes of a full-encoding serialized histogram, without the serialization header
*
* @param numBuckets number of buckets
* @return full serialized size in bytes
*/
public static int getFullStorageSize(int numBuckets)
{
return COMMON_FIELDS_SIZE +
Long.BYTES * numBuckets;
}
/**
* Compute the size in bytes of a sparse-encoding serialized histogram, without the serialization header
*
* @param nonEmptyBuckets number of non-empty buckets
* @return sparse serialized size in bytes
*/
public static int getSparseStorageSize(int nonEmptyBuckets)
{
return COMMON_FIELDS_SIZE +
Integer.BYTES +
(Integer.BYTES + Long.BYTES) * nonEmptyBuckets;
}
@VisibleForTesting
public int getNonEmptyBucketCount()
{
int count = 0;
for (int i = 0; i < numBuckets; i++) {
if (histogram[i] != 0) {
count++;
}
}
return count;
}
/**
* Updates the histogram state when an outlier value is encountered. An implementation is provided for each
* supported outlierHandlingMode.
*/
private interface OutlierHandler
{
/**
* Handle an outlier when a single numeric value is added to the histogram.
*
* @param exceededMax If true, the value was an upper outlier. If false, the value was a lower outlier.
*/
void handleOutlierAdd(boolean exceededMax);
/**
* Merge outlier information from another histogram.
*
* Called when merging two histograms that have overlapping ranges and potentially different bucket sizes.
*
* @param otherHistogram
* @param rangeStart
* @param rangeEnd
*/
void simpleInterpolateMergeHandleOutliers(
FixedBucketsHistogram otherHistogram,
double rangeStart,
double rangeEnd
);
/**
* Merge outlier information from another histogram.
*
* Called when merging two histograms with identical buckets (same range and number of buckets)
*
* @param otherHistogram other histogram being merged
*/
void handleOutliersForCombineSameBuckets(FixedBucketsHistogram otherHistogram);
/**
* Merge outlier information from another histogram.
*
* Called when merging two histograms, where the histogram to be merged has lowerLimit greater than my upperLimit
* @param otherHistogram other histogram being merged
*/
void handleOutliersCombineDifferentBucketsAllUpper(FixedBucketsHistogram otherHistogram);
/**
* Merge outlier information from another histogram.
*
* Called when merging two histograms, where the histogram to be merged has upperLimit less than my lowerLimit
* @param otherHistogram other histogram being merged
*/
void handleOutliersCombineDifferentBucketsAllLower(FixedBucketsHistogram otherHistogram);
}
private OutlierHandler makeOutlierHandler()
{
switch (outlierHandlingMode) {
case IGNORE:
return new IgnoreOutlierHandler();
case OVERFLOW:
return new OverflowOutlierHandler();
case CLIP:
return new ClipOutlierHandler();
default:
throw new ISE("Unknown outlier handling mode: %s", outlierHandlingMode);
}
}
private static class IgnoreOutlierHandler implements OutlierHandler
{
@Override
public void handleOutlierAdd(boolean exceededMax)
{
}
@Override
public void simpleInterpolateMergeHandleOutliers(
FixedBucketsHistogram otherHistogram,
double rangeStart,
double rangeEnd
)
{
}
@Override
public void handleOutliersForCombineSameBuckets(FixedBucketsHistogram otherHistogram)
{
}
@Override
public void handleOutliersCombineDifferentBucketsAllUpper(FixedBucketsHistogram otherHistogram)
{
}
@Override
public void handleOutliersCombineDifferentBucketsAllLower(FixedBucketsHistogram otherHistogram)
{
}
}
private class OverflowOutlierHandler implements OutlierHandler
{
@Override
public void handleOutlierAdd(boolean exceededMax)
{
if (exceededMax) {
upperOutlierCount += 1;
} else {
lowerOutlierCount += 1;
}
}
@Override
public void simpleInterpolateMergeHandleOutliers(
FixedBucketsHistogram otherHistogram,
double rangeStart,
double rangeEnd
)
{
// They contain me
if (lowerLimit == rangeStart && upperLimit == rangeEnd) {
long lowerCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeStart, true));
long upperCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeEnd, false));
upperOutlierCount += otherHistogram.getUpperOutlierCount() + upperCountFromOther;
lowerOutlierCount += otherHistogram.getLowerOutlierCount() + lowerCountFromOther;
} else if (rangeStart == lowerLimit) {
// assume that none of the other histogram's outliers fall within our range
// how many values were there in the portion of the other histogram that falls under my lower limit?
long lowerCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeStart, true));
lowerOutlierCount += lowerCountFromOther;
lowerOutlierCount += otherHistogram.getLowerOutlierCount();
upperOutlierCount += otherHistogram.getUpperOutlierCount();
} else if (rangeEnd == upperLimit) {
// how many values were there in the portion of the other histogram that is greater than my upper limit?
long upperCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeEnd, false));
upperOutlierCount += upperCountFromOther;
upperOutlierCount += otherHistogram.getUpperOutlierCount();
lowerOutlierCount += otherHistogram.getLowerOutlierCount();
} else if (rangeStart > lowerLimit && rangeEnd < upperLimit) {
upperOutlierCount += otherHistogram.getUpperOutlierCount();
lowerOutlierCount += otherHistogram.getLowerOutlierCount();
}
}
@Override
public void handleOutliersForCombineSameBuckets(FixedBucketsHistogram otherHistogram)
{
lowerOutlierCount += otherHistogram.getLowerOutlierCount();
upperOutlierCount += otherHistogram.getUpperOutlierCount();
}
@Override
public void handleOutliersCombineDifferentBucketsAllUpper(FixedBucketsHistogram otherHistogram)
{
// ignore any lower outliers in the other histogram, we're not sure where those outliers would fall
// within our range.
upperOutlierCount += otherHistogram.getCount() + otherHistogram.getUpperOutlierCount();
}
@Override
public void handleOutliersCombineDifferentBucketsAllLower(FixedBucketsHistogram otherHistogram)
{
// ignore any upper outliers in the other histogram, we're not sure where those outliers would fall
// within our range.
lowerOutlierCount += otherHistogram.getCount() + otherHistogram.getLowerOutlierCount();
}
}
private class ClipOutlierHandler implements OutlierHandler
{
@Override
public void handleOutlierAdd(boolean exceededMax)
{
double clippedValue;
count += 1;
if (exceededMax) {
clippedValue = upperLimit;
histogram[histogram.length - 1] += 1;
} else {
clippedValue = lowerLimit;
histogram[0] += 1;
}
if (clippedValue > max) {
max = clippedValue;
}
if (clippedValue < min) {
min = clippedValue;
}
}
@Override
public void simpleInterpolateMergeHandleOutliers(
FixedBucketsHistogram otherHistogram,
double rangeStart,
double rangeEnd
)
{
// They contain me
if (lowerLimit == rangeStart && upperLimit == rangeEnd) {
long lowerCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeStart, true));
long upperCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeEnd, false));
histogram[histogram.length - 1] += otherHistogram.getUpperOutlierCount() + upperCountFromOther;
histogram[0] += otherHistogram.getLowerOutlierCount() + lowerCountFromOther;
count += otherHistogram.getUpperOutlierCount() + otherHistogram.getLowerOutlierCount();
count += upperCountFromOther + lowerCountFromOther;
if (otherHistogram.getUpperOutlierCount() + upperCountFromOther > 0) {
max = Math.max(max, upperLimit);
}
if (otherHistogram.getLowerOutlierCount() + lowerCountFromOther > 0) {
min = Math.min(min, lowerLimit);
}
} else if (rangeStart == lowerLimit) {
// assume that none of the other histogram's outliers fall within our range
// how many values were there in the portion of the other histogram that falls under my lower limit?
long lowerCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeStart, true));
histogram[0] += lowerCountFromOther;
histogram[0] += otherHistogram.getLowerOutlierCount();
histogram[histogram.length - 1] += otherHistogram.getUpperOutlierCount();
count += lowerCountFromOther + otherHistogram.getLowerOutlierCount() + otherHistogram.getUpperOutlierCount();
if (lowerCountFromOther + otherHistogram.getLowerOutlierCount() > 0) {
min = lowerLimit;
}
if (otherHistogram.getUpperOutlierCount() > 0) {
max = upperLimit;
}
} else if (rangeEnd == upperLimit) {
// how many values were there in the portion of the other histogram that is greater than my upper limit?
long upperCountFromOther = Math.round(otherHistogram.getCumulativeCount(rangeEnd, false));
histogram[histogram.length - 1] += upperCountFromOther;
histogram[histogram.length - 1] += otherHistogram.getUpperOutlierCount();
histogram[0] += otherHistogram.getLowerOutlierCount();
count += upperCountFromOther + otherHistogram.getLowerOutlierCount() + otherHistogram.getUpperOutlierCount();
if (upperCountFromOther + otherHistogram.getUpperOutlierCount() > 0) {
max = upperLimit;
}
if (otherHistogram.getLowerOutlierCount() > 0) {
min = lowerLimit;
}
} else if (rangeStart > lowerLimit && rangeEnd < upperLimit) {
// I contain them
histogram[histogram.length - 1] += otherHistogram.getUpperOutlierCount();
histogram[0] += otherHistogram.getLowerOutlierCount();
count += otherHistogram.getUpperOutlierCount() + otherHistogram.getLowerOutlierCount();
if (otherHistogram.getUpperOutlierCount() > 0) {
max = Math.max(max, upperLimit);
} else if (otherHistogram.getCount() > 0) {
max = Math.max(max, otherHistogram.getMax());
}
if (otherHistogram.getLowerOutlierCount() > 0) {
min = Math.min(min, lowerLimit);
} else if (otherHistogram.getCount() > 0) {
min = Math.min(min, otherHistogram.getMin());
}
}
}
@Override
public void handleOutliersForCombineSameBuckets(FixedBucketsHistogram otherHistogram)
{
if (otherHistogram.getLowerOutlierCount() > 0) {
histogram[0] += otherHistogram.getLowerOutlierCount();
count += otherHistogram.getLowerOutlierCount();
min = Math.min(lowerLimit, min);
}
if (otherHistogram.getUpperOutlierCount() > 0) {
histogram[histogram.length - 1] += otherHistogram.getUpperOutlierCount();
count += otherHistogram.getUpperOutlierCount();
max = Math.max(upperLimit, max);
}
}
@Override
public void handleOutliersCombineDifferentBucketsAllUpper(FixedBucketsHistogram otherHistogram)
{
long otherCount = otherHistogram.getCount() + otherHistogram.getUpperOutlierCount();
histogram[histogram.length - 1] += otherCount;
count += otherCount;
if (otherCount > 0) {
max = Math.max(max, upperLimit);
}
}
@Override
public void handleOutliersCombineDifferentBucketsAllLower(FixedBucketsHistogram otherHistogram)
{
long otherCount = otherHistogram.getCount() + otherHistogram.getLowerOutlierCount();
histogram[0] += otherCount;
count += otherCount;
if (otherCount > 0) {
min = Math.min(min, lowerLimit);
}
}
}
}