org.apache.flink.graph.example.PageRank Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.graph.example;
import org.apache.flink.api.common.ProgramDescription;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.graph.Edge;
import org.apache.flink.graph.Graph;
import org.apache.flink.graph.Vertex;
import org.apache.flink.graph.library.PageRankAlgorithm;
import org.apache.flink.graph.utils.Tuple3ToEdgeMap;
import org.apache.flink.util.Collector;
/**
* This example implements a simple PageRank algorithm, using a vertex-centric iteration.
*
* The edges input file is expected to contain one edge per line, with long IDs and double
* values, in the following format:"\t\t".
*
* If no arguments are provided, the example runs with a random graph of 10 vertices
* and random edge weights.
*
*/
public class PageRank implements ProgramDescription {
@SuppressWarnings("serial")
public static void main(String[] args) throws Exception {
if(!parseParameters(args)) {
return;
}
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet> links = getLinksDataSet(env);
Graph network = Graph.fromDataSet(links, new MapFunction() {
public Double map(Long value) throws Exception {
return 1.0;
}
}, env);
DataSet> vertexOutDegrees = network.outDegrees();
// assign the transition probabilities as the edge weights
Graph networkWithWeights = network
.joinWithEdgesOnSource(vertexOutDegrees,
new MapFunction, Double>() {
public Double map(Tuple2 value) {
return value.f0 / value.f1;
}
});
DataSet> pageRanks = networkWithWeights.run(
new PageRankAlgorithm(DAMPENING_FACTOR, maxIterations))
.getVertices();
if (fileOutput) {
pageRanks.writeAsCsv(outputPath, "\n", "\t");
// since file sinks are lazy, we trigger the execution explicitly
env.execute();
} else {
pageRanks.print();
}
}
@Override
public String getDescription() {
return "PageRank example";
}
// *************************************************************************
// UTIL METHODS
// *************************************************************************
private static boolean fileOutput = false;
private static final double DAMPENING_FACTOR = 0.85;
private static long numPages = 10;
private static String edgeInputPath = null;
private static String outputPath = null;
private static int maxIterations = 10;
private static boolean parseParameters(String[] args) {
if(args.length > 0) {
if(args.length != 3) {
System.err.println("Usage: PageRank
© 2015 - 2025 Weber Informatics LLC | Privacy Policy