org.apache.flink.graph.library.PageRankAlgorithm Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.graph.library;
import org.apache.flink.graph.Edge;
import org.apache.flink.graph.Graph;
import org.apache.flink.graph.GraphAlgorithm;
import org.apache.flink.graph.Vertex;
import org.apache.flink.graph.spargel.MessageIterator;
import org.apache.flink.graph.spargel.MessagingFunction;
import org.apache.flink.graph.spargel.VertexUpdateFunction;
import java.io.Serializable;
public class PageRankAlgorithm & Serializable> implements
GraphAlgorithm {
private double beta;
private int maxIterations;
public PageRankAlgorithm(double beta, int maxIterations) {
this.beta = beta;
this.maxIterations = maxIterations;
}
@Override
public Graph run(Graph network) throws Exception {
final long numberOfVertices = network.numberOfVertices();
return network.runVertexCentricIteration(new VertexRankUpdater(beta, numberOfVertices), new RankMessenger(numberOfVertices),
maxIterations);
}
/**
* Function that updates the rank of a vertex by summing up the partial
* ranks from all incoming messages and then applying the dampening formula.
*/
@SuppressWarnings("serial")
public static final class VertexRankUpdater extends VertexUpdateFunction {
private final double beta;
private final long numVertices;
public VertexRankUpdater(double beta, long numberOfVertices) {
this.beta = beta;
this.numVertices = numberOfVertices;
}
@Override
public void updateVertex(Vertex vertex, MessageIterator inMessages) {
double rankSum = 0.0;
for (double msg : inMessages) {
rankSum += msg;
}
// apply the dampening factor / random jump
double newRank = (beta * rankSum) + (1 - beta) / numVertices;
setNewVertexValue(newRank);
}
}
/**
* Distributes the rank of a vertex among all target vertices according to
* the transition probability, which is associated with an edge as the edge
* value.
*/
@SuppressWarnings("serial")
public static final class RankMessenger extends MessagingFunction {
private final long numVertices;
public RankMessenger(long numberOfVertices) {
this.numVertices = numberOfVertices;
}
@Override
public void sendMessages(Vertex vertex) {
if (getSuperstepNumber() == 1) {
// initialize vertex ranks
vertex.setValue(new Double(1.0 / numVertices));
}
for (Edge edge : getEdges()) {
sendMessageTo(edge.getTarget(), vertex.getValue() * edge.getValue());
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy