
org.apache.flink.graph.library.PageRank Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.graph.library;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.graph.Edge;
import org.apache.flink.graph.EdgeJoinFunction;
import org.apache.flink.graph.Graph;
import org.apache.flink.graph.GraphAlgorithm;
import org.apache.flink.graph.Vertex;
import org.apache.flink.graph.spargel.GatherFunction;
import org.apache.flink.graph.spargel.MessageIterator;
import org.apache.flink.graph.spargel.ScatterFunction;
import org.apache.flink.graph.spargel.ScatterGatherConfiguration;
import org.apache.flink.types.LongValue;
/**
* This is an implementation of a simple PageRank algorithm, using a scatter-gather iteration.
* The user can define the damping factor and the maximum number of iterations.
*
* The implementation assumes that each page has at least one incoming and one outgoing link.
*/
public class PageRank implements GraphAlgorithm>> {
private double beta;
private int maxIterations;
/**
* Creates an instance of the PageRank algorithm.
*
* The implementation assumes that each page has at least one incoming and one outgoing link.
*
* @param beta the damping factor
* @param maxIterations the maximum number of iterations
*/
public PageRank(double beta, int maxIterations) {
this.beta = beta;
this.maxIterations = maxIterations;
}
@Override
public DataSet> run(Graph network) throws Exception {
DataSet> vertexOutDegrees = network.outDegrees();
Graph networkWithWeights = network
.joinWithEdgesOnSource(vertexOutDegrees, new InitWeights());
ScatterGatherConfiguration parameters = new ScatterGatherConfiguration();
parameters.setOptNumVertices(true);
return networkWithWeights.runScatterGatherIteration(new RankMessenger(),
new VertexRankUpdater(beta), maxIterations, parameters)
.getVertices();
}
/**
* Distributes the rank of a vertex among all target vertices according to
* the transition probability, which is associated with an edge as the edge
* value.
*/
@SuppressWarnings("serial")
public static final class RankMessenger extends ScatterFunction {
@Override
public void sendMessages(Vertex vertex) {
if (getSuperstepNumber() == 1) {
// initialize vertex ranks
vertex.setValue(1.0 / this.getNumberOfVertices());
}
for (Edge edge : getEdges()) {
sendMessageTo(edge.getTarget(), vertex.getValue() * edge.getValue());
}
}
}
/**
* Function that updates the rank of a vertex by summing up the partial
* ranks from all incoming messages and then applying the dampening formula.
*/
@SuppressWarnings("serial")
public static final class VertexRankUpdater extends GatherFunction {
private final double beta;
public VertexRankUpdater(double beta) {
this.beta = beta;
}
@Override
public void updateVertex(Vertex vertex, MessageIterator inMessages) {
double rankSum = 0.0;
for (double msg : inMessages) {
rankSum += msg;
}
// apply the dampening factor / random jump
double newRank = (beta * rankSum) + (1 - beta) / this.getNumberOfVertices();
setNewVertexValue(newRank);
}
}
@SuppressWarnings("serial")
private static final class InitWeights implements EdgeJoinFunction {
public Double edgeJoin(Double edgeValue, LongValue inputValue) {
return edgeValue / (double) inputValue.getValue();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy