
org.apache.flink.examples.java.graph.PageRankBasic Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.examples.java.graph;
import static org.apache.flink.api.java.aggregation.Aggregations.SUM;
import java.util.ArrayList;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.GroupReduceFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFields;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.IterativeDataSet;
import org.apache.flink.examples.java.graph.util.PageRankData;
/**
* A basic implementation of the Page Rank algorithm using a bulk iteration.
*
*
* This implementation requires a set of pages and a set of directed links as input and works as follows.
* In each iteration, the rank of every page is evenly distributed to all pages it points to.
* Each page collects the partial ranks of all pages that point to it, sums them up, and applies a dampening factor to the sum.
* The result is the new rank of the page. A new iteration is started with the new ranks of all pages.
* This implementation terminates after a fixed number of iterations.
* This is the Wikipedia entry for the Page Rank algorithm.
*
*
* Input files are plain text files and must be formatted as follows:
*
* - Pages represented as an (long) ID separated by new-line characters.
* For example "1\n2\n12\n42\n63"
gives five pages with IDs 1, 2, 12, 42, and 63.
* - Links are represented as pairs of page IDs which are separated by space
* characters. Links are separated by new-line characters.
* For example "1 2\n2 12\n1 12\n42 63"
gives four (directed) links (1)->(2), (2)->(12), (1)->(12), and (42)->(63).
* For this simple implementation it is required that each page has at least one incoming and one outgoing link (a page can point to itself).
*
*
*
* Usage: PageRankBasic <pages path> <links path> <output path> <num pages> <num iterations>
* If no parameters are provided, the program is run with default data from {@link PageRankData} and 10 iterations.
*
*
* This example shows how to use:
*
* - Bulk Iterations
*
- Default Join
*
- Configure user-defined functions using constructor parameters.
*
*
*
*/
@SuppressWarnings("serial")
public class PageRankBasic {
private static final double DAMPENING_FACTOR = 0.85;
private static final double EPSILON = 0.0001;
// *************************************************************************
// PROGRAM
// *************************************************************************
public static void main(String[] args) throws Exception {
if(!parseParameters(args)) {
return;
}
// set up execution environment
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// get input data
DataSet pagesInput = getPagesDataSet(env);
DataSet> linksInput = getLinksDataSet(env);
// assign initial rank to pages
DataSet> pagesWithRanks = pagesInput.
map(new RankAssigner((1.0d / numPages)));
// build adjacency list from link input
DataSet> adjacencyListInput =
linksInput.groupBy(0).reduceGroup(new BuildOutgoingEdgeList());
// set iterative data set
IterativeDataSet> iteration = pagesWithRanks.iterate(maxIterations);
DataSet> newRanks = iteration
// join pages with outgoing edges and distribute rank
.join(adjacencyListInput).where(0).equalTo(0).flatMap(new JoinVertexWithEdgesMatch())
// collect and sum ranks
.groupBy(0).aggregate(SUM, 1)
// apply dampening factor
.map(new Dampener(DAMPENING_FACTOR, numPages));
DataSet> finalPageRanks = iteration.closeWith(
newRanks,
newRanks.join(iteration).where(0).equalTo(0)
// termination condition
.filter(new EpsilonFilter()));
// emit result
if(fileOutput) {
finalPageRanks.writeAsCsv(outputPath, "\n", " ");
// execute program
env.execute("Basic Page Rank Example");
} else {
finalPageRanks.print();
}
}
// *************************************************************************
// USER FUNCTIONS
// *************************************************************************
/**
* A map function that assigns an initial rank to all pages.
*/
public static final class RankAssigner implements MapFunction> {
Tuple2 outPageWithRank;
public RankAssigner(double rank) {
this.outPageWithRank = new Tuple2(-1l, rank);
}
@Override
public Tuple2 map(Long page) {
outPageWithRank.f0 = page;
return outPageWithRank;
}
}
/**
* A reduce function that takes a sequence of edges and builds the adjacency list for the vertex where the edges
* originate. Run as a pre-processing step.
*/
@ForwardedFields("0")
public static final class BuildOutgoingEdgeList implements GroupReduceFunction, Tuple2> {
private final ArrayList neighbors = new ArrayList();
@Override
public void reduce(Iterable> values, Collector> out) {
neighbors.clear();
Long id = 0L;
for (Tuple2 n : values) {
id = n.f0;
neighbors.add(n.f1);
}
out.collect(new Tuple2(id, neighbors.toArray(new Long[neighbors.size()])));
}
}
/**
* Join function that distributes a fraction of a vertex's rank to all neighbors.
*/
public static final class JoinVertexWithEdgesMatch implements FlatMapFunction, Tuple2>, Tuple2> {
@Override
public void flatMap(Tuple2, Tuple2> value, Collector> out){
Long[] neigbors = value.f1.f1;
double rank = value.f0.f1;
double rankToDistribute = rank / ((double) neigbors.length);
for (int i = 0; i < neigbors.length; i++) {
out.collect(new Tuple2(neigbors[i], rankToDistribute));
}
}
}
/**
* The function that applies the page rank dampening formula
*/
@ForwardedFields("0")
public static final class Dampener implements MapFunction, Tuple2> {
private final double dampening;
private final double randomJump;
public Dampener(double dampening, double numVertices) {
this.dampening = dampening;
this.randomJump = (1 - dampening) / numVertices;
}
@Override
public Tuple2 map(Tuple2 value) {
value.f1 = (value.f1 * dampening) + randomJump;
return value;
}
}
/**
* Filter that filters vertices where the rank difference is below a threshold.
*/
public static final class EpsilonFilter implements FilterFunction, Tuple2>> {
@Override
public boolean filter(Tuple2, Tuple2> value) {
return Math.abs(value.f0.f1 - value.f1.f1) > EPSILON;
}
}
// *************************************************************************
// UTIL METHODS
// *************************************************************************
private static boolean fileOutput = false;
private static String pagesInputPath = null;
private static String linksInputPath = null;
private static String outputPath = null;
private static long numPages = 0;
private static int maxIterations = 10;
private static boolean parseParameters(String[] args) {
if(args.length > 0) {
if(args.length == 5) {
fileOutput = true;
pagesInputPath = args[0];
linksInputPath = args[1];
outputPath = args[2];
numPages = Integer.parseInt(args[3]);
maxIterations = Integer.parseInt(args[4]);
} else {
System.err.println("Usage: PageRankBasic