All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.examples.java.clustering.KMeans Maven / Gradle / Ivy

There is a newer version: 0.10.2-hadoop1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.examples.java.clustering;

import java.io.Serializable;
import java.util.Collection;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFields;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.examples.java.clustering.util.KMeansData;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.IterativeDataSet;

/**
 * This example implements a basic K-Means clustering algorithm.
 * 
 * 

* K-Means is an iterative clustering algorithm and works as follows:
* K-Means is given a set of data points to be clustered and an initial set of K cluster centers. * In each iteration, the algorithm computes the distance of each data point to each cluster center. * Each point is assigned to the cluster center which is closest to it. * Subsequently, each cluster center is moved to the center (mean) of all points that have been assigned to it. * The moved cluster centers are fed into the next iteration. * The algorithm terminates after a fixed number of iterations (as in this implementation) * or if cluster centers do not (significantly) move in an iteration.
* This is the Wikipedia entry for the K-Means Clustering algorithm. * *

* This implementation works on two-dimensional data points.
* It computes an assignment of data points to cluster centers, i.e., * each data point is annotated with the id of the final cluster (center) it belongs to. * *

* Input files are plain text files and must be formatted as follows: *

    *
  • Data points are represented as two double values separated by a blank character. * Data points are separated by newline characters.
    * For example "1.2 2.3\n5.3 7.2\n" gives two data points (x=1.2, y=2.3) and (x=5.3, y=7.2). *
  • Cluster centers are represented by an integer id and a point value.
    * For example "1 6.2 3.2\n2 2.9 5.7\n" gives two centers (id=1, x=6.2, y=3.2) and (id=2, x=2.9, y=5.7). *
* *

* Usage: KMeans <points path> <centers path> <result path> <num iterations>
* If no parameters are provided, the program is run with default data from {@link KMeansData} and 10 iterations. * *

* This example shows how to use: *

    *
  • Bulk iterations *
  • Broadcast variables in bulk iterations *
  • Custom Java objects (PoJos) *
*/ @SuppressWarnings("serial") public class KMeans { // ************************************************************************* // PROGRAM // ************************************************************************* public static void main(String[] args) throws Exception { if(!parseParameters(args)) { return; } // set up execution environment ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // get input data DataSet points = getPointDataSet(env); DataSet centroids = getCentroidDataSet(env); // set number of bulk iterations for KMeans algorithm IterativeDataSet loop = centroids.iterate(numIterations); DataSet newCentroids = points // compute closest centroid for each point .map(new SelectNearestCenter()).withBroadcastSet(loop, "centroids") // count and sum point coordinates for each centroid .map(new CountAppender()) .groupBy(0).reduce(new CentroidAccumulator()) // compute new centroids from point counts and coordinate sums .map(new CentroidAverager()); // feed new centroids back into next iteration DataSet finalCentroids = loop.closeWith(newCentroids); DataSet> clusteredPoints = points // assign points to final clusters .map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids"); // emit result if (fileOutput) { clusteredPoints.writeAsCsv(outputPath, "\n", " "); // since file sinks are lazy, we trigger the execution explicitly env.execute("KMeans Example"); } else { clusteredPoints.print(); } } // ************************************************************************* // DATA TYPES // ************************************************************************* /** * A simple two-dimensional point. */ public static class Point implements Serializable { public double x, y; public Point() {} public Point(double x, double y) { this.x = x; this.y = y; } public Point add(Point other) { x += other.x; y += other.y; return this; } public Point div(long val) { x /= val; y /= val; return this; } public double euclideanDistance(Point other) { return Math.sqrt((x-other.x)*(x-other.x) + (y-other.y)*(y-other.y)); } public void clear() { x = y = 0.0; } @Override public String toString() { return x + " " + y; } } /** * A simple two-dimensional centroid, basically a point with an ID. */ public static class Centroid extends Point { public int id; public Centroid() {} public Centroid(int id, double x, double y) { super(x,y); this.id = id; } public Centroid(int id, Point p) { super(p.x, p.y); this.id = id; } @Override public String toString() { return id + " " + super.toString(); } } // ************************************************************************* // USER FUNCTIONS // ************************************************************************* /** Converts a {@code Tuple2} into a Point. */ @ForwardedFields("0->x; 1->y") public static final class TuplePointConverter implements MapFunction, Point> { @Override public Point map(Tuple2 t) throws Exception { return new Point(t.f0, t.f1); } } /** Converts a {@code Tuple3} into a Centroid. */ @ForwardedFields("0->id; 1->x; 2->y") public static final class TupleCentroidConverter implements MapFunction, Centroid> { @Override public Centroid map(Tuple3 t) throws Exception { return new Centroid(t.f0, t.f1, t.f2); } } /** Determines the closest cluster center for a data point. */ @ForwardedFields("*->1") public static final class SelectNearestCenter extends RichMapFunction> { private Collection centroids; /** Reads the centroid values from a broadcast variable into a collection. */ @Override public void open(Configuration parameters) throws Exception { this.centroids = getRuntimeContext().getBroadcastVariable("centroids"); } @Override public Tuple2 map(Point p) throws Exception { double minDistance = Double.MAX_VALUE; int closestCentroidId = -1; // check all cluster centers for (Centroid centroid : centroids) { // compute distance double distance = p.euclideanDistance(centroid); // update nearest cluster if necessary if (distance < minDistance) { minDistance = distance; closestCentroidId = centroid.id; } } // emit a new record with the center id and the data point. return new Tuple2(closestCentroidId, p); } } /** Appends a count variable to the tuple. */ @ForwardedFields("f0;f1") public static final class CountAppender implements MapFunction, Tuple3> { @Override public Tuple3 map(Tuple2 t) { return new Tuple3(t.f0, t.f1, 1L); } } /** Sums and counts point coordinates. */ @ForwardedFields("0") public static final class CentroidAccumulator implements ReduceFunction> { @Override public Tuple3 reduce(Tuple3 val1, Tuple3 val2) { return new Tuple3(val1.f0, val1.f1.add(val2.f1), val1.f2 + val2.f2); } } /** Computes new centroid from coordinate sum and count of points. */ @ForwardedFields("0->id") public static final class CentroidAverager implements MapFunction, Centroid> { @Override public Centroid map(Tuple3 value) { return new Centroid(value.f0, value.f1.div(value.f2)); } } // ************************************************************************* // UTIL METHODS // ************************************************************************* private static boolean fileOutput = false; private static String pointsPath = null; private static String centersPath = null; private static String outputPath = null; private static int numIterations = 10; private static boolean parseParameters(String[] programArguments) { if(programArguments.length > 0) { // parse input arguments fileOutput = true; if(programArguments.length == 4) { pointsPath = programArguments[0]; centersPath = programArguments[1]; outputPath = programArguments[2]; numIterations = Integer.parseInt(programArguments[3]); } else { System.err.println("Usage: KMeans "); return false; } } else { System.out.println("Executing K-Means example with default parameters and built-in default data."); System.out.println(" Provide parameters to read input data from files."); System.out.println(" See the documentation for the correct format of input files."); System.out.println(" We provide a data generator to create synthetic input files for this program."); System.out.println(" Usage: KMeans "); } return true; } private static DataSet getPointDataSet(ExecutionEnvironment env) { if(fileOutput) { // read points from CSV file return env.readCsvFile(pointsPath) .fieldDelimiter(" ") .includeFields(true, true) .types(Double.class, Double.class) .map(new TuplePointConverter()); } else { return KMeansData.getDefaultPointDataSet(env); } } private static DataSet getCentroidDataSet(ExecutionEnvironment env) { if(fileOutput) { return env.readCsvFile(centersPath) .fieldDelimiter(" ") .includeFields(true, true, true) .types(Integer.class, Double.class, Double.class) .map(new TupleCentroidConverter()); } else { return KMeansData.getDefaultCentroidDataSet(env); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy