All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.api.java.DataSet Maven / Gradle / Ivy

There is a newer version: 1.20.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.api.java;

import org.apache.commons.lang3.Validate;
import org.apache.flink.api.common.InvalidProgramException;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.GroupReduceFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.MapPartitionFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.io.FileOutputFormat;
import org.apache.flink.api.common.io.OutputFormat;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.operators.base.JoinOperatorBase.JoinHint;
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod;
import org.apache.flink.api.java.aggregation.Aggregations;
import org.apache.flink.api.java.functions.FormattingMapper;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.functions.SelectByMaxFunction;
import org.apache.flink.api.java.functions.SelectByMinFunction;
import org.apache.flink.api.java.io.CsvOutputFormat;
import org.apache.flink.api.java.io.PrintingOutputFormat;
import org.apache.flink.api.java.io.TextOutputFormat;
import org.apache.flink.api.java.io.TextOutputFormat.TextFormatter;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.CoGroupOperator;
import org.apache.flink.api.java.operators.CoGroupOperator.CoGroupOperatorSets;
import org.apache.flink.api.java.operators.CrossOperator;
import org.apache.flink.api.java.operators.CustomUnaryOperation;
import org.apache.flink.api.java.operators.DataSink;
import org.apache.flink.api.java.operators.DeltaIteration;
import org.apache.flink.api.java.operators.DistinctOperator;
import org.apache.flink.api.java.operators.FilterOperator;
import org.apache.flink.api.java.functions.FirstReducer;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.GroupReduceOperator;
import org.apache.flink.api.java.operators.IterativeDataSet;
import org.apache.flink.api.java.operators.JoinOperator.JoinOperatorSets;
import org.apache.flink.api.java.operators.Keys;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.api.java.operators.MapPartitionOperator;
import org.apache.flink.api.java.operators.PartitionOperator;
import org.apache.flink.api.java.operators.ProjectOperator.Projection;
import org.apache.flink.api.java.operators.ReduceOperator;
import org.apache.flink.api.java.operators.SortedGrouping;
import org.apache.flink.api.java.operators.UnionOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.InputTypeConfigurable;
import org.apache.flink.api.java.typeutils.TupleTypeInfo;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.core.fs.FileSystem.WriteMode;
import org.apache.flink.core.fs.Path;

/**
 * A DataSet represents a collection of elements of the same type.
* A DataSet can be transformed into another DataSet by applying a transformation as for example *
    *
  • {@link DataSet#map(org.apache.flink.api.common.functions.MapFunction)},
  • *
  • {@link DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction)},
  • *
  • {@link DataSet#join(DataSet)}, or
  • *
  • {@link DataSet#coGroup(DataSet)}.
  • *
* * @param The type of the DataSet, i.e., the type of the elements of the DataSet. */ public abstract class DataSet { private final ExecutionEnvironment context; private final TypeInformation type; protected DataSet(ExecutionEnvironment context, TypeInformation type) { if (context == null) { throw new NullPointerException("context is null"); } if (type == null) { throw new NullPointerException("type is null"); } this.context = context; this.type = type; } /** * Returns the {@link ExecutionEnvironment} in which this DataSet is registered. * * @return The ExecutionEnvironment in which this DataSet is registered. * * @see ExecutionEnvironment */ public ExecutionEnvironment getExecutionEnvironment() { return this.context; } /** * Returns the {@link TypeInformation} for the type of this DataSet. * * @return The TypeInformation for the type of this DataSet. * * @see TypeInformation */ public TypeInformation getType() { return this.type; } // -------------------------------------------------------------------------------------------- // Filter & Transformations // -------------------------------------------------------------------------------------------- /** * Applies a Map transformation on a {@link DataSet}.
* The transformation calls a {@link org.apache.flink.api.common.functions.RichMapFunction} for each element of the DataSet. * Each MapFunction call returns exactly one element. * * @param mapper The MapFunction that is called for each element of the DataSet. * @return A MapOperator that represents the transformed DataSet. * * @see org.apache.flink.api.common.functions.RichMapFunction * @see MapOperator * @see DataSet */ public MapOperator map(MapFunction mapper) { if (mapper == null) { throw new NullPointerException("Map function must not be null."); } TypeInformation resultType = TypeExtractor.getMapReturnTypes(mapper, this.getType()); return new MapOperator(this, resultType, mapper); } /** * Applies a Map-style operation to the entire partition of the data. * The function is called once per parallel partition of the data, * and the entire partition is available through the given Iterator. * The number of elements that each instance of the MapPartition function * sees is non deterministic and depends on the degree of parallelism of the operation. * * This function is intended for operations that cannot transform individual elements, * requires no grouping of elements. To transform individual elements, * the use of {@code map()} and {@code flatMap()} is preferable. * * @param mapPartition The MapPartitionFunction that is called for the full DataSet. * @return A MapPartitionOperator that represents the transformed DataSet. * * @see MapPartitionFunction * @see MapPartitionOperator * @see DataSet */ public MapPartitionOperator mapPartition(MapPartitionFunction mapPartition ){ if (mapPartition == null) { throw new NullPointerException("MapPartition function must not be null."); } TypeInformation resultType = TypeExtractor.getMapPartitionReturnTypes(mapPartition, this.getType()); return new MapPartitionOperator(this, resultType, mapPartition); } /** * Applies a FlatMap transformation on a {@link DataSet}.
* The transformation calls a {@link org.apache.flink.api.common.functions.RichFlatMapFunction} for each element of the DataSet. * Each FlatMapFunction call can return any number of elements including none. * * @param flatMapper The FlatMapFunction that is called for each element of the DataSet. * @return A FlatMapOperator that represents the transformed DataSet. * * @see org.apache.flink.api.common.functions.RichFlatMapFunction * @see FlatMapOperator * @see DataSet */ public FlatMapOperator flatMap(FlatMapFunction flatMapper) { if (flatMapper == null) { throw new NullPointerException("FlatMap function must not be null."); } TypeInformation resultType = TypeExtractor.getFlatMapReturnTypes(flatMapper, this.getType()); return new FlatMapOperator(this, resultType, flatMapper); } /** * Applies a Filter transformation on a {@link DataSet}.
* The transformation calls a {@link org.apache.flink.api.common.functions.RichFilterFunction} for each element of the DataSet * and retains only those element for which the function returns true. Elements for * which the function returns false are filtered. * * @param filter The FilterFunction that is called for each element of the DataSet. * @return A FilterOperator that represents the filtered DataSet. * * @see org.apache.flink.api.common.functions.RichFilterFunction * @see FilterOperator * @see DataSet */ public FilterOperator filter(FilterFunction filter) { if (filter == null) { throw new NullPointerException("Filter function must not be null."); } return new FilterOperator(this, filter); } // -------------------------------------------------------------------------------------------- // Projections // -------------------------------------------------------------------------------------------- /** * Initiates a Project transformation on a {@link Tuple} {@link DataSet}.
* Note: Only Tuple DataSets can be projected.
* The transformation projects each Tuple of the DataSet onto a (sub)set of fields.
* This method returns a {@link Projection} on which {@link Projection#types(Class)} needs to * be called to completed the transformation. * * @param fieldIndexes The field indexes of the input tuples that are retained. * The order of fields in the output tuple corresponds to the order of field indexes. * @return A Projection that needs to be converted into a {@link org.apache.flink.api.java.operators.ProjectOperator} to complete the * Project transformation by calling {@link Projection#types(Class)}. * * @see Tuple * @see DataSet * @see Projection * @see org.apache.flink.api.java.operators.ProjectOperator */ public Projection project(int... fieldIndexes) { return new Projection(this, fieldIndexes); } // -------------------------------------------------------------------------------------------- // Non-grouped aggregations // -------------------------------------------------------------------------------------------- /** * Applies an Aggregate transformation on a non-grouped {@link Tuple} {@link DataSet}.
* Note: Only Tuple DataSets can be aggregated. * The transformation applies a built-in {@link Aggregations Aggregation} on a specified field * of a Tuple DataSet. Additional aggregation functions can be added to the resulting * {@link AggregateOperator} by calling {@link AggregateOperator#and(Aggregations, int)}. * * @param agg The built-in aggregation function that is computed. * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the aggregated DataSet. * * @see Tuple * @see Aggregations * @see AggregateOperator * @see DataSet */ public AggregateOperator aggregate(Aggregations agg, int field) { return new AggregateOperator(this, agg, field); } /** * Syntactic sugar for aggregate (SUM, field) * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the summed DataSet. * * @see org.apache.flink.api.java.operators.AggregateOperator */ public AggregateOperator sum (int field) { return this.aggregate (Aggregations.SUM, field); } /** * Syntactic sugar for aggregate (MAX, field) * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the max'ed DataSet. * * @see org.apache.flink.api.java.operators.AggregateOperator */ public AggregateOperator max (int field) { return this.aggregate (Aggregations.MAX, field); } /** * Syntactic sugar for aggregate (MIN, field) * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the min'ed DataSet. * * @see org.apache.flink.api.java.operators.AggregateOperator */ public AggregateOperator min (int field) { return this.aggregate (Aggregations.MIN, field); } /** * Applies a Reduce transformation on a non-grouped {@link DataSet}.
* The transformation consecutively calls a {@link org.apache.flink.api.common.functions.RichReduceFunction} * until only a single element remains which is the result of the transformation. * A ReduceFunction combines two elements into one new element of the same type. * * @param reducer The ReduceFunction that is applied on the DataSet. * @return A ReduceOperator that represents the reduced DataSet. * * @see org.apache.flink.api.common.functions.RichReduceFunction * @see ReduceOperator * @see DataSet */ public ReduceOperator reduce(ReduceFunction reducer) { if (reducer == null) { throw new NullPointerException("Reduce function must not be null."); } return new ReduceOperator(this, reducer); } /** * Applies a GroupReduce transformation on a non-grouped {@link DataSet}.
* The transformation calls a {@link org.apache.flink.api.common.functions.RichGroupReduceFunction} once with the full DataSet. * The GroupReduceFunction can iterate over all elements of the DataSet and emit any * number of output elements including none. * * @param reducer The GroupReduceFunction that is applied on the DataSet. * @return A GroupReduceOperator that represents the reduced DataSet. * * @see org.apache.flink.api.common.functions.RichGroupReduceFunction * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public GroupReduceOperator reduceGroup(GroupReduceFunction reducer) { if (reducer == null) { throw new NullPointerException("GroupReduce function must not be null."); } TypeInformation resultType = TypeExtractor.getGroupReduceReturnTypes(reducer, this.getType()); return new GroupReduceOperator(this, resultType, reducer); } /** * Applies a special case of a reduce transformation (minBy) on a non-grouped {@link DataSet}.
* The transformation consecutively calls a {@link ReduceFunction} * until only a single element remains which is the result of the transformation. * A ReduceFunction combines two elements into one new element of the same type. * * @param fields Keys taken into account for finding the minimum. * @return A {@link ReduceOperator} representing the minimum. */ @SuppressWarnings({ "unchecked", "rawtypes" }) public ReduceOperator minBy(int... fields) { // Check for using a tuple if(!this.type.isTupleType()) { throw new InvalidProgramException("Method minBy(int) only works on tuples."); } return new ReduceOperator(this, new SelectByMinFunction( (TupleTypeInfo) this.type, fields)); } /** * Applies a special case of a reduce transformation (maxBy) on a non-grouped {@link DataSet}.
* The transformation consecutively calls a {@link ReduceFunction} * until only a single element remains which is the result of the transformation. * A ReduceFunction combines two elements into one new element of the same type. * * @param fields Keys taken into account for finding the minimum. * @return A {@link ReduceOperator} representing the minimum. */ @SuppressWarnings({ "unchecked", "rawtypes" }) public ReduceOperator maxBy(int... fields) { // Check for using a tuple if(!this.type.isTupleType()) { throw new InvalidProgramException("Method maxBy(int) only works on tuples."); } return new ReduceOperator(this, new SelectByMaxFunction( (TupleTypeInfo) this.type, fields)); } /** * Returns a new set containing the first n elements in this {@link DataSet}.
* @param n The desired number of elements. * @return A ReduceGroupOperator that represents the DataSet containing the elements. */ public GroupReduceOperator first(int n) { if(n < 1) { throw new InvalidProgramException("Parameter n of first(n) must be at least 1."); } return reduceGroup(new FirstReducer(n)); } // -------------------------------------------------------------------------------------------- // distinct // -------------------------------------------------------------------------------------------- /** * Returns a distinct set of a {@link DataSet} using a {@link KeySelector} function. *

* The KeySelector function is called for each element of the DataSet and extracts a single key value on which the * decision is made if two items are distinct or not. * * @param keyExtractor The KeySelector function which extracts the key values from the DataSet on which the * distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator distinct(KeySelector keyExtractor) { TypeInformation keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, type); return new DistinctOperator(this, new Keys.SelectorFunctionKeys(keyExtractor, getType(), keyType)); } /** * Returns a distinct set of a {@link Tuple} {@link DataSet} using field position keys. *

* The field position keys specify the fields of Tuples on which the decision is made if two Tuples are distinct or * not. *

* Note: Field position keys can only be specified for Tuple DataSets. * * @param fields One or more field positions on which the distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator distinct(int... fields) { return new DistinctOperator(this, new Keys.ExpressionKeys(fields, getType(), true)); } /** * Returns a distinct set of a {@link Tuple} {@link DataSet} using expression keys. *

* The field position keys specify the fields of Tuples or Pojos on which the decision is made if two elements are distinct or * not. *

* * @param fields One or more field positions on which the distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator distinct(String... fields) { return new DistinctOperator(this, new Keys.ExpressionKeys(fields, getType())); } /** * Returns a distinct set of a {@link Tuple} {@link DataSet} using all fields of the tuple. *

* Note: This operator can only be applied to Tuple DataSets. * * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator distinct() { return new DistinctOperator(this, null); } // -------------------------------------------------------------------------------------------- // Grouping // -------------------------------------------------------------------------------------------- /** * Groups a {@link DataSet} using a {@link KeySelector} function. * The KeySelector function is called for each element of the DataSet and extracts a single * key value on which the DataSet is grouped.
* This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. *

    *
  • {@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. *
  • {@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. *
  • {@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. *
  • {@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. *
* * @param keyExtractor The KeySelector function which extracts the key values from the DataSet on which it is grouped. * @return An UnsortedGrouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see KeySelector * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public UnsortedGrouping groupBy(KeySelector keyExtractor) { TypeInformation keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, type); return new UnsortedGrouping(this, new Keys.SelectorFunctionKeys(keyExtractor, getType(), keyType)); } /** * Groups a {@link Tuple} {@link DataSet} using field position keys.
* Note: Field position keys only be specified for Tuple DataSets.
* The field position keys specify the fields of Tuples on which the DataSet is grouped. * This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. *
    *
  • {@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. *
  • {@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. *
  • {@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. *
  • {@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. *
* * @param fields One or more field positions on which the DataSet will be grouped. * @return A Grouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see Tuple * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public UnsortedGrouping groupBy(int... fields) { return new UnsortedGrouping(this, new Keys.ExpressionKeys(fields, getType(), false)); } /** * Groups a {@link DataSet} using field expressions. A field expression is either the name of a public field * or a getter method with parentheses of the {@link DataSet}S underlying type. A dot can be used to drill down * into objects, as in {@code "field1.getInnerField2()" }. * This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. *
    *
  • {@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. *
  • {@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. *
  • {@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. *
  • {@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. *
* * @param fields One or more field expressions on which the DataSet will be grouped. * @return A Grouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see Tuple * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public UnsortedGrouping groupBy(String... fields) { return new UnsortedGrouping(this, new Keys.ExpressionKeys(fields, getType())); } // -------------------------------------------------------------------------------------------- // Joining // -------------------------------------------------------------------------------------------- /** * Initiates a Join transformation.
* A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.
* * This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public JoinOperatorSets join(DataSet other) { return new JoinOperatorSets(this, other); } /** * Initiates a Join transformation.
* A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.
* * This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @param strategy The strategy that should be used execute the join. If {@code null} is give, then the * optimizer will pick the join strategy. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public JoinOperatorSets join(DataSet other, JoinHint strategy) { return new JoinOperatorSets(this, other, strategy); } /** * Initiates a Join transformation.
* A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.
* This method also gives the hint to the optimizer that the second DataSet to join is much * smaller than the first one.
* This method returns a {@link JoinOperatorSets} on which * {@link JoinOperatorSets#where(String...)} needs to be called to define the join key of the first * joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public JoinOperatorSets joinWithTiny(DataSet other) { return new JoinOperatorSets(this, other, JoinHint.BROADCAST_HASH_SECOND); } /** * Initiates a Join transformation.
* A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.
* This method also gives the hint to the optimizer that the second DataSet to join is much * larger than the first one.
* This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public JoinOperatorSets joinWithHuge(DataSet other) { return new JoinOperatorSets(this, other, JoinHint.BROADCAST_HASH_FIRST); } // -------------------------------------------------------------------------------------------- // Co-Grouping // -------------------------------------------------------------------------------------------- /** * Initiates a CoGroup transformation.
* A CoGroup transformation combines the elements of * two {@link DataSet DataSets} into one DataSet. It groups each DataSet individually on a key and * gives groups of both DataSets with equal keys together into a {@link org.apache.flink.api.common.functions.RichCoGroupFunction}. * If a DataSet has a group with no matching key in the other DataSet, the CoGroupFunction * is called with an empty group for the non-existing group.
* The CoGroupFunction can iterate over the elements of both groups and return any number * of elements including none.
* This method returns a {@link CoGroupOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet of the CoGroup transformation. * @return A CoGroupOperatorSets to continue the definition of the CoGroup transformation. * * @see CoGroupOperatorSets * @see CoGroupOperator * @see DataSet */ public CoGroupOperator.CoGroupOperatorSets coGroup(DataSet other) { return new CoGroupOperator.CoGroupOperatorSets(this, other); } // -------------------------------------------------------------------------------------------- // Cross // -------------------------------------------------------------------------------------------- /** * Continues a Join transformation and defines the {@link Tuple} fields of the second join * {@link DataSet} that should be used as join keys.
* Note: Fields can only be selected as join keys on Tuple DataSets.
* * The resulting {@link DefaultJoin} wraps each pair of joining elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * * @param fields The indexes of the Tuple fields of the second join DataSet that should be used as keys. * @return A DefaultJoin that represents the joined DataSet. */ /** * Initiates a Cross transformation.
* A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * *

* The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * *

* Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.
* * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public CrossOperator.DefaultCross cross(DataSet other) { return new CrossOperator.DefaultCross(this, other); } /** * Initiates a Cross transformation.
* A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * This method also gives the hint to the optimizer that the second DataSet to cross is much * smaller than the first one. * *

* The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * *

* Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.
* * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public CrossOperator.DefaultCross crossWithTiny(DataSet other) { return new CrossOperator.DefaultCross(this, other); } /** * Initiates a Cross transformation.
* A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * This method also gives the hint to the optimizer that the second DataSet to cross is much * larger than the first one. * *

* The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * *

* Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.
* * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public CrossOperator.DefaultCross crossWithHuge(DataSet other) { return new CrossOperator.DefaultCross(this, other); } // -------------------------------------------------------------------------------------------- // Iterations // -------------------------------------------------------------------------------------------- /** * Initiates an iterative part of the program that executes multiple times and feeds back data sets. * The iterative part needs to be closed by calling {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet)}. The data set * given to the {@code closeWith(DataSet)} method is the data set that will be fed back and used as the input * to the next iteration. The return value of the {@code closeWith(DataSet)} method is the resulting * data set after the iteration has terminated. *

* An example of an iterative computation is as follows: * *

	 * {@code
	 * DataSet input = ...;
	 * 
	 * DataSet startOfIteration = input.iterate(10);
	 * DataSet toBeFedBack = startOfIteration
	 *                               .map(new MyMapper())
	 *                               .groupBy(...).reduceGroup(new MyReducer());
	 * DataSet result = startOfIteration.closeWith(toBeFedBack);
	 * }
	 * 
*

* The iteration has a maximum number of times that it executes. A dynamic termination can be realized by using a * termination criterion (see {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet, DataSet)}). * * @param maxIterations The maximum number of times that the iteration is executed. * @return An IterativeDataSet that marks the start of the iterative part and needs to be closed by * {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet)}. * * @see org.apache.flink.api.java.operators.IterativeDataSet */ public IterativeDataSet iterate(int maxIterations) { return new IterativeDataSet(getExecutionEnvironment(), getType(), this, maxIterations); } /** * Initiates a delta iteration. A delta iteration is similar to a regular iteration (as started by {@link #iterate(int)}, * but maintains state across the individual iteration steps. The Solution set, which represents the current state * at the beginning of each iteration can be obtained via {@link org.apache.flink.api.java.operators.DeltaIteration#getSolutionSet()} ()}. * It can be be accessed by joining (or CoGrouping) with it. The DataSet that represents the workset of an iteration * can be obtained via {@link org.apache.flink.api.java.operators.DeltaIteration#getWorkset()}. * The solution set is updated by producing a delta for it, which is merged into the solution set at the end of each * iteration step. *

* The delta iteration must be closed by calling {@link org.apache.flink.api.java.operators.DeltaIteration#closeWith(DataSet, DataSet)}. The two * parameters are the delta for the solution set and the new workset (the data set that will be fed back). * The return value of the {@code closeWith(DataSet, DataSet)} method is the resulting * data set after the iteration has terminated. Delta iterations terminate when the feed back data set * (the workset) is empty. In addition, a maximum number of steps is given as a fall back termination guard. *

* Elements in the solution set are uniquely identified by a key. When merging the solution set delta, contained elements * with the same key are replaced. *

* NOTE: Delta iterations currently support only tuple valued data types. This restriction * will be removed in the future. The key is specified by the tuple position. *

* A code example for a delta iteration is as follows *

	 * {@code
	 * DeltaIteration, Tuple2> iteration =
	 *                                                  initialState.iterateDelta(initialFeedbakSet, 100, 0);
	 * 
	 * DataSet> delta = iteration.groupBy(0).aggregate(Aggregations.AVG, 1)
	 *                                              .join(iteration.getSolutionSet()).where(0).equalTo(0)
	 *                                              .flatMap(new ProjectAndFilter());
	 *                                              
	 * DataSet> feedBack = delta.join(someOtherSet).where(...).equalTo(...).with(...);
	 * 
	 * // close the delta iteration (delta and new workset are identical)
	 * DataSet> result = iteration.closeWith(delta, feedBack);
	 * }
	 * 
* * @param workset The initial version of the data set that is fed back to the next iteration step (the workset). * @param maxIterations The maximum number of iteration steps, as a fall back safeguard. * @param keyPositions The position of the tuple fields that is used as the key of the solution set. * * @return The DeltaIteration that marks the start of a delta iteration. * * @see org.apache.flink.api.java.operators.DeltaIteration */ public DeltaIteration iterateDelta(DataSet workset, int maxIterations, int... keyPositions) { Keys.ExpressionKeys keys = new Keys.ExpressionKeys(keyPositions, getType(), false); return new DeltaIteration(getExecutionEnvironment(), getType(), this, workset, keys, maxIterations); } // -------------------------------------------------------------------------------------------- // Custom Operators // ------------------------------------------------------------------------------------------- /** * Runs a {@link CustomUnaryOperation} on the data set. Custom operations are typically complex * operators that are composed of multiple steps. * * @param operation The operation to run. * @return The data set produced by the operation. */ public DataSet runOperation(CustomUnaryOperation operation) { Validate.notNull(operation, "The custom operator must not be null."); operation.setInput(this); return operation.createResult(); } // -------------------------------------------------------------------------------------------- // Union // -------------------------------------------------------------------------------------------- /** * Creates a union of this DataSet with an other DataSet. The other DataSet must be of the same data type. * * @param other The other DataSet which is unioned with the current DataSet. * @return The resulting DataSet. */ public UnionOperator union(DataSet other){ return new UnionOperator(this, other); } // -------------------------------------------------------------------------------------------- // Partitioning // -------------------------------------------------------------------------------------------- /** * Hash-partitions a DataSet on the specified key fields. *

* Important:This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param fields The field indexes on which the DataSet is hash-partitioned. * @return The partitioned DataSet. */ public PartitionOperator partitionByHash(int... fields) { return new PartitionOperator(this, PartitionMethod.HASH, new Keys.ExpressionKeys(fields, getType(), false)); } /** * Hash-partitions a DataSet on the specified key fields. *

* Important:This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param fields The field expressions on which the DataSet is hash-partitioned. * @return The partitioned DataSet. */ public PartitionOperator partitionByHash(String... fields) { return new PartitionOperator(this, PartitionMethod.HASH, new Keys.ExpressionKeys(fields, getType())); } /** * Partitions a DataSet using the specified KeySelector. *

* Important:This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param keyExtractor The KeyExtractor with which the DataSet is hash-partitioned. * @return The partitioned DataSet. * * @see KeySelector */ public > PartitionOperator partitionByHash(KeySelector keyExtractor) { final TypeInformation keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, type); return new PartitionOperator(this, PartitionMethod.HASH, new Keys.SelectorFunctionKeys(keyExtractor, this.getType(), keyType)); } /** * Enforces a rebalancing of the DataSet, i.e., the DataSet is evenly distributed over all parallel instances of the * following task. This can help to improve performance in case of heavy data skew and compute intensive operations. *

* Important:This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @return The rebalanced DataSet. */ public PartitionOperator rebalance() { return new PartitionOperator(this, PartitionMethod.REBALANCE); } // -------------------------------------------------------------------------------------------- // Top-K // -------------------------------------------------------------------------------------------- // -------------------------------------------------------------------------------------------- // Result writing // -------------------------------------------------------------------------------------------- /** * Writes a DataSet as a text file to the specified location.
* For each element of the DataSet the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the text file is written to. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat */ public DataSink writeAsText(String filePath) { return output(new TextOutputFormat(new Path(filePath))); } /** * Writes a DataSet as a text file to the specified location.
* For each element of the DataSet the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the text file is written to. * @param writeMode Control the behavior for existing files. Options are NO_OVERWRITE and OVERWRITE. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat */ public DataSink writeAsText(String filePath, WriteMode writeMode) { TextOutputFormat tof = new TextOutputFormat(new Path(filePath)); tof.setWriteMode(writeMode); return output(tof); } /** * Writes a DataSet as a text file to the specified location.
* For each element of the DataSet the result of {@link TextFormatter#format(Object)} is written. * * @param filePath The path pointing to the location the text file is written to. * @param formatter formatter that is applied on every element of the DataSet. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat */ public DataSink writeAsFormattedText(String filePath, TextFormatter formatter) { return this.map(new FormattingMapper(formatter)).writeAsText(filePath); } /** * Writes a DataSet as a text file to the specified location.
* For each element of the DataSet the result of {@link TextFormatter#format(Object)} is written. * * @param filePath The path pointing to the location the text file is written to. * @param writeMode Control the behavior for existing files. Options are NO_OVERWRITE and OVERWRITE. * @param formatter formatter that is applied on every element of the DataSet. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat */ public DataSink writeAsFormattedText(String filePath, WriteMode writeMode, final TextFormatter formatter) { return this.map(new FormattingMapper(formatter)).writeAsText(filePath, writeMode); } /** * Writes a {@link Tuple} DataSet as a CSV file to the specified location.
* Note: Only a Tuple DataSet can written as a CSV file.
* For each Tuple field the result of {@link Object#toString()} is written. * Tuple fields are separated by the default field delimiter {@code "comma" (,)}.
* Tuples are are separated by the newline character ({@code \n}). * * @param filePath The path pointing to the location the CSV file is written to. * @return The DataSink that writes the DataSet. * * @see Tuple * @see CsvOutputFormat */ public DataSink writeAsCsv(String filePath) { return writeAsCsv(filePath, CsvOutputFormat.DEFAULT_LINE_DELIMITER, CsvOutputFormat.DEFAULT_FIELD_DELIMITER); } /** * Writes a {@link Tuple} DataSet as a CSV file to the specified location.
* Note: Only a Tuple DataSet can written as a CSV file.
* For each Tuple field the result of {@link Object#toString()} is written. * Tuple fields are separated by the default field delimiter {@code "comma" (,)}.
* Tuples are are separated by the newline character ({@code \n}). * * @param filePath The path pointing to the location the CSV file is written to. * @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE. * @return The DataSink that writes the DataSet. * * @see Tuple * @see CsvOutputFormat */ public DataSink writeAsCsv(String filePath, WriteMode writeMode) { return internalWriteAsCsv(new Path(filePath),CsvOutputFormat.DEFAULT_LINE_DELIMITER, CsvOutputFormat.DEFAULT_FIELD_DELIMITER, writeMode); } /** * Writes a {@link Tuple} DataSet as a CSV file to the specified location with the specified field and line delimiters.
* Note: Only a Tuple DataSet can written as a CSV file.
* For each Tuple field the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the CSV file is written to. * @param rowDelimiter The row delimiter to separate Tuples. * @param fieldDelimiter The field delimiter to separate Tuple fields. * * @see Tuple * @see CsvOutputFormat */ public DataSink writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter) { return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, null); } /** * Writes a {@link Tuple} DataSet as a CSV file to the specified location with the specified field and line delimiters.
* Note: Only a Tuple DataSet can written as a CSV file.
* For each Tuple field the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the CSV file is written to. * @param rowDelimiter The row delimiter to separate Tuples. * @param fieldDelimiter The field delimiter to separate Tuple fields. * @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE. * * @see Tuple * @see CsvOutputFormat */ public DataSink writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter, WriteMode writeMode) { return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, writeMode); } @SuppressWarnings("unchecked") private DataSink internalWriteAsCsv(Path filePath, String rowDelimiter, String fieldDelimiter, WriteMode wm) { Validate.isTrue(this.type.isTupleType(), "The writeAsCsv() method can only be used on data sets of tuples."); CsvOutputFormat of = new CsvOutputFormat(filePath, rowDelimiter, fieldDelimiter); if(wm != null) { of.setWriteMode(wm); } return output((OutputFormat) of); } /** * Writes a DataSet to the standard output stream (stdout).
* For each element of the DataSet the result of {@link Object#toString()} is written. * * @return The DataSink that writes the DataSet. */ public DataSink print() { return output(new PrintingOutputFormat(false)); } /** * Writes a DataSet to the standard error stream (stderr).
* For each element of the DataSet the result of {@link Object#toString()} is written. * * @return The DataSink that writes the DataSet. */ public DataSink printToErr() { return output(new PrintingOutputFormat(true)); } /** * Writes a DataSet using a {@link FileOutputFormat} to a specified location. * This method adds a data sink to the program. * * @param outputFormat The FileOutputFormat to write the DataSet. * @param filePath The path to the location where the DataSet is written. * @return The DataSink that writes the DataSet. * * @see FileOutputFormat */ public DataSink write(FileOutputFormat outputFormat, String filePath) { Validate.notNull(filePath, "File path must not be null."); Validate.notNull(outputFormat, "Output format must not be null."); outputFormat.setOutputFilePath(new Path(filePath)); return output(outputFormat); } /** * Writes a DataSet using a {@link FileOutputFormat} to a specified location. * This method adds a data sink to the program. * * @param outputFormat The FileOutputFormat to write the DataSet. * @param filePath The path to the location where the DataSet is written. * @param writeMode The mode of writing, indicating whether to overwrite existing files. * @return The DataSink that writes the DataSet. * * @see FileOutputFormat */ public DataSink write(FileOutputFormat outputFormat, String filePath, WriteMode writeMode) { Validate.notNull(filePath, "File path must not be null."); Validate.notNull(writeMode, "Write mode must not be null."); Validate.notNull(outputFormat, "Output format must not be null."); outputFormat.setOutputFilePath(new Path(filePath)); outputFormat.setWriteMode(writeMode); return output(outputFormat); } /** * Emits a DataSet using an {@link OutputFormat}. This method adds a data sink to the program. * Programs may have multiple data sinks. A DataSet may also have multiple consumers (data sinks * or transformations) at the same time. * * @param outputFormat The OutputFormat to process the DataSet. * @return The DataSink that processes the DataSet. * * @see OutputFormat * @see DataSink */ public DataSink output(OutputFormat outputFormat) { Validate.notNull(outputFormat); // configure the type if needed if (outputFormat instanceof InputTypeConfigurable) { ((InputTypeConfigurable) outputFormat).setInputType(this.type); } DataSink sink = new DataSink(this, outputFormat, this.type); this.context.registerDataSink(sink); return sink; } // -------------------------------------------------------------------------------------------- // Utilities // -------------------------------------------------------------------------------------------- protected static void checkSameExecutionContext(DataSet set1, DataSet set2) { if (set1.context != set2.context) { throw new IllegalArgumentException("The two inputs have different execution contexts."); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy