All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.api.java.ExecutionEnvironment Maven / Gradle / Ivy

There is a newer version: 1.20.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.api.java;

import org.apache.flink.annotation.Internal;
import org.apache.flink.annotation.Public;
import org.apache.flink.annotation.PublicEvolving;
import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.common.InvalidProgramException;
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.common.JobID;
import org.apache.flink.api.common.Plan;
import org.apache.flink.api.common.cache.DistributedCache.DistributedCacheEntry;
import org.apache.flink.api.common.io.FileInputFormat;
import org.apache.flink.api.common.io.InputFormat;
import org.apache.flink.api.common.operators.OperatorInformation;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.io.CollectionInputFormat;
import org.apache.flink.api.java.io.CsvReader;
import org.apache.flink.api.java.io.IteratorInputFormat;
import org.apache.flink.api.java.io.ParallelIteratorInputFormat;
import org.apache.flink.api.java.io.PrimitiveInputFormat;
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.api.java.io.TextValueInputFormat;
import org.apache.flink.api.java.operators.DataSink;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.Operator;
import org.apache.flink.api.java.operators.OperatorTranslation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.PojoTypeInfo;
import org.apache.flink.api.java.typeutils.ResultTypeQueryable;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.api.java.typeutils.ValueTypeInfo;
import org.apache.flink.api.java.typeutils.runtime.kryo.Serializers;
import org.apache.flink.configuration.ConfigConstants;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.RestOptions;
import org.apache.flink.core.fs.Path;
import org.apache.flink.types.StringValue;
import org.apache.flink.util.NumberSequenceIterator;
import org.apache.flink.util.Preconditions;
import org.apache.flink.util.SplittableIterator;
import org.apache.flink.util.Visitor;

import com.esotericsoftware.kryo.Serializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;

import static org.apache.flink.util.Preconditions.checkNotNull;

/**
 * The ExecutionEnvironment is the context in which a program is executed. A
 * {@link LocalEnvironment} will cause execution in the current JVM, a
 * {@link RemoteEnvironment} will cause execution on a remote setup.
 *
 * 

The environment provides methods to control the job execution (such as setting the parallelism) * and to interact with the outside world (data access). * *

Please note that the execution environment needs strong type information for the input and return types * of all operations that are executed. This means that the environments needs to know that the return * value of an operation is for example a Tuple of String and Integer. * Because the Java compiler throws much of the generic type information away, most methods attempt to re- * obtain that information using reflection. In certain cases, it may be necessary to manually supply that * information to some of the methods. * * @see LocalEnvironment * @see RemoteEnvironment */ @Public public abstract class ExecutionEnvironment { /** The logger used by the environment and its subclasses. */ protected static final Logger LOG = LoggerFactory.getLogger(ExecutionEnvironment.class); /** The environment of the context (local by default, cluster if invoked through command line). */ private static ExecutionEnvironmentFactory contextEnvironmentFactory; /** The default parallelism used by local environments. */ private static int defaultLocalDop = Runtime.getRuntime().availableProcessors(); // -------------------------------------------------------------------------------------------- private final List> sinks = new ArrayList<>(); private final List> cacheFile = new ArrayList<>(); private final ExecutionConfig config = new ExecutionConfig(); /** Result from the latest execution, to make it retrievable when using eager execution methods. */ protected JobExecutionResult lastJobExecutionResult; /** The ID of the session, defined by this execution environment. Sessions and Jobs are same in * Flink, as Jobs can consist of multiple parts that are attached to the growing dataflow graph. */ protected JobID jobID; /** The session timeout in seconds. */ protected long sessionTimeout; /** Flag to indicate whether sinks have been cleared in previous executions. */ private boolean wasExecuted = false; /** * Creates a new Execution Environment. */ protected ExecutionEnvironment() { jobID = JobID.generate(); } // -------------------------------------------------------------------------------------------- // Properties // -------------------------------------------------------------------------------------------- /** * Gets the config object that defines execution parameters. * * @return The environment's execution configuration. */ public ExecutionConfig getConfig() { return config; } /** * Gets the parallelism with which operation are executed by default. Operations can * individually override this value to use a specific parallelism via * {@link Operator#setParallelism(int)}. Other operations may need to run with a different * parallelism - for example calling * {@link DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction)} over the entire * set will insert eventually an operation that runs non-parallel (parallelism of one). * * @return The parallelism used by operations, unless they override that value. This method * returns {@link ExecutionConfig#PARALLELISM_DEFAULT}, if the environment's default parallelism should be used. */ public int getParallelism() { return config.getParallelism(); } /** * Sets the parallelism for operations executed through this environment. * Setting a parallelism of x here will cause all operators (such as join, map, reduce) to run with * x parallel instances. * *

This method overrides the default parallelism for this environment. * The {@link LocalEnvironment} uses by default a value equal to the number of hardware * contexts (CPU cores / threads). When executing the program via the command line client * from a JAR file, the default parallelism is the one configured for that setup. * * @param parallelism The parallelism */ public void setParallelism(int parallelism) { config.setParallelism(parallelism); } /** * Sets the restart strategy configuration. The configuration specifies which restart strategy * will be used for the execution graph in case of a restart. * * @param restartStrategyConfiguration Restart strategy configuration to be set */ @PublicEvolving public void setRestartStrategy(RestartStrategies.RestartStrategyConfiguration restartStrategyConfiguration) { config.setRestartStrategy(restartStrategyConfiguration); } /** * Returns the specified restart strategy configuration. * * @return The restart strategy configuration to be used */ @PublicEvolving public RestartStrategies.RestartStrategyConfiguration getRestartStrategy() { return config.getRestartStrategy(); } /** * Sets the number of times that failed tasks are re-executed. A value of zero * effectively disables fault tolerance. A value of {@code -1} indicates that the system * default value (as defined in the configuration) should be used. * * @param numberOfExecutionRetries The number of times the system will try to re-execute failed tasks. * * @deprecated This method will be replaced by {@link #setRestartStrategy}. The * {@link RestartStrategies.FixedDelayRestartStrategyConfiguration} contains the number of * execution retries. */ @Deprecated @PublicEvolving public void setNumberOfExecutionRetries(int numberOfExecutionRetries) { config.setNumberOfExecutionRetries(numberOfExecutionRetries); } /** * Gets the number of times the system will try to re-execute failed tasks. A value * of {@code -1} indicates that the system default value (as defined in the configuration) * should be used. * * @return The number of times the system will try to re-execute failed tasks. * * @deprecated This method will be replaced by {@link #getRestartStrategy}. The * {@link RestartStrategies.FixedDelayRestartStrategyConfiguration} contains the number of * execution retries. */ @Deprecated @PublicEvolving public int getNumberOfExecutionRetries() { return config.getNumberOfExecutionRetries(); } /** * Returns the {@link org.apache.flink.api.common.JobExecutionResult} of the last executed job. * * @return The execution result from the latest job execution. */ public JobExecutionResult getLastJobExecutionResult(){ return this.lastJobExecutionResult; } // -------------------------------------------------------------------------------------------- // Session Management // -------------------------------------------------------------------------------------------- /** * Gets the JobID by which this environment is identified. The JobID sets the execution context * in the cluster or local environment. * * @return The JobID of this environment. * @see #getIdString() */ @PublicEvolving public JobID getId() { return this.jobID; } /** * Gets the JobID by which this environment is identified, as a string. * * @return The JobID as a string. * @see #getId() */ @PublicEvolving public String getIdString() { return this.jobID.toString(); } /** * Sets the session timeout to hold the intermediate results of a job. This only * applies the updated timeout in future executions. * * @param timeout The timeout, in seconds. */ @PublicEvolving public void setSessionTimeout(long timeout) { throw new IllegalStateException("Support for sessions is currently disabled. " + "It will be enabled in future Flink versions."); // Session management is disabled, revert this commit to enable //if (timeout < 0) { // throw new IllegalArgumentException("The session timeout must not be less than zero."); //} //this.sessionTimeout = timeout; } /** * Gets the session timeout for this environment. The session timeout defines for how long * after an execution, the job and its intermediate results will be kept for future * interactions. * * @return The session timeout, in seconds. */ @PublicEvolving public long getSessionTimeout() { return sessionTimeout; } /** * Starts a new session, discarding the previous data flow and all of its intermediate results. */ @PublicEvolving public abstract void startNewSession() throws Exception; // -------------------------------------------------------------------------------------------- // Registry for types and serializers // -------------------------------------------------------------------------------------------- /** * Adds a new Kryo default serializer to the Runtime. * *

Note that the serializer instance must be serializable (as defined by java.io.Serializable), * because it may be distributed to the worker nodes by java serialization. * * @param type The class of the types serialized with the given serializer. * @param serializer The serializer to use. */ public & Serializable>void addDefaultKryoSerializer(Class type, T serializer) { config.addDefaultKryoSerializer(type, serializer); } /** * Adds a new Kryo default serializer to the Runtime. * * @param type The class of the types serialized with the given serializer. * @param serializerClass The class of the serializer to use. */ public void addDefaultKryoSerializer(Class type, Class> serializerClass) { config.addDefaultKryoSerializer(type, serializerClass); } /** * Registers the given type with a Kryo Serializer. * *

Note that the serializer instance must be serializable (as defined by java.io.Serializable), * because it may be distributed to the worker nodes by java serialization. * * @param type The class of the types serialized with the given serializer. * @param serializer The serializer to use. */ public & Serializable>void registerTypeWithKryoSerializer(Class type, T serializer) { config.registerTypeWithKryoSerializer(type, serializer); } /** * Registers the given Serializer via its class as a serializer for the given type at the KryoSerializer. * * @param type The class of the types serialized with the given serializer. * @param serializerClass The class of the serializer to use. */ public void registerTypeWithKryoSerializer(Class type, Class> serializerClass) { config.registerTypeWithKryoSerializer(type, serializerClass); } /** * Registers the given type with the serialization stack. If the type is eventually * serialized as a POJO, then the type is registered with the POJO serializer. If the * type ends up being serialized with Kryo, then it will be registered at Kryo to make * sure that only tags are written. * * @param type The class of the type to register. */ public void registerType(Class type) { if (type == null) { throw new NullPointerException("Cannot register null type class."); } TypeInformation typeInfo = TypeExtractor.createTypeInfo(type); if (typeInfo instanceof PojoTypeInfo) { config.registerPojoType(type); } else { config.registerKryoType(type); } } // -------------------------------------------------------------------------------------------- // Data set creations // -------------------------------------------------------------------------------------------- // ---------------------------------- Text Input Format --------------------------------------- /** * Creates a {@link DataSet} that represents the Strings produced by reading the given file line wise. * The file will be read with the UTF-8 character set. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @return A {@link DataSet} that represents the data read from the given file as text lines. */ public DataSource readTextFile(String filePath) { Preconditions.checkNotNull(filePath, "The file path may not be null."); return new DataSource<>(this, new TextInputFormat(new Path(filePath)), BasicTypeInfo.STRING_TYPE_INFO, Utils.getCallLocationName()); } /** * Creates a {@link DataSet} that represents the Strings produced by reading the given file line wise. * The {@link java.nio.charset.Charset} with the given name will be used to read the files. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @param charsetName The name of the character set used to read the file. * @return A {@link DataSet} that represents the data read from the given file as text lines. */ public DataSource readTextFile(String filePath, String charsetName) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextInputFormat format = new TextInputFormat(new Path(filePath)); format.setCharsetName(charsetName); return new DataSource<>(this, format, BasicTypeInfo.STRING_TYPE_INFO, Utils.getCallLocationName()); } // -------------------------- Text Input Format With String Value------------------------------ /** * Creates a {@link DataSet} that represents the Strings produced by reading the given file line wise. * This method is similar to {@link #readTextFile(String)}, but it produces a DataSet with mutable * {@link StringValue} objects, rather than Java Strings. StringValues can be used to tune implementations * to be less object and garbage collection heavy. * *

The file will be read with the UTF-8 character set. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @return A {@link DataSet} that represents the data read from the given file as text lines. */ public DataSource readTextFileWithValue(String filePath) { Preconditions.checkNotNull(filePath, "The file path may not be null."); return new DataSource<>(this, new TextValueInputFormat(new Path(filePath)), new ValueTypeInfo<>(StringValue.class), Utils.getCallLocationName()); } /** * Creates a {@link DataSet} that represents the Strings produced by reading the given file line wise. * This method is similar to {@link #readTextFile(String, String)}, but it produces a DataSet with mutable * {@link StringValue} objects, rather than Java Strings. StringValues can be used to tune implementations * to be less object and garbage collection heavy. * *

The {@link java.nio.charset.Charset} with the given name will be used to read the files. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @param charsetName The name of the character set used to read the file. * @param skipInvalidLines A flag to indicate whether to skip lines that cannot be read with the given character set. * * @return A DataSet that represents the data read from the given file as text lines. */ public DataSource readTextFileWithValue(String filePath, String charsetName, boolean skipInvalidLines) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextValueInputFormat format = new TextValueInputFormat(new Path(filePath)); format.setCharsetName(charsetName); format.setSkipInvalidLines(skipInvalidLines); return new DataSource<>(this, format, new ValueTypeInfo<>(StringValue.class), Utils.getCallLocationName()); } // ----------------------------------- Primitive Input Format --------------------------------------- /** * Creates a {@link DataSet} that represents the primitive type produced by reading the given file line wise. * This method is similar to {@link #readCsvFile(String)} with single field, but it produces a DataSet not through * {@link org.apache.flink.api.java.tuple.Tuple1}. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @param typeClass The primitive type class to be read. * @return A {@link DataSet} that represents the data read from the given file as primitive type. */ public DataSource readFileOfPrimitives(String filePath, Class typeClass) { Preconditions.checkNotNull(filePath, "The file path may not be null."); return new DataSource<>(this, new PrimitiveInputFormat<>(new Path(filePath), typeClass), TypeExtractor.getForClass(typeClass), Utils.getCallLocationName()); } /** * Creates a {@link DataSet} that represents the primitive type produced by reading the given file in delimited way. * This method is similar to {@link #readCsvFile(String)} with single field, but it produces a DataSet not through * {@link org.apache.flink.api.java.tuple.Tuple1}. * * @param filePath The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @param delimiter The delimiter of the given file. * @param typeClass The primitive type class to be read. * @return A {@link DataSet} that represents the data read from the given file as primitive type. */ public DataSource readFileOfPrimitives(String filePath, String delimiter, Class typeClass) { Preconditions.checkNotNull(filePath, "The file path may not be null."); return new DataSource<>(this, new PrimitiveInputFormat<>(new Path(filePath), delimiter, typeClass), TypeExtractor.getForClass(typeClass), Utils.getCallLocationName()); } // ----------------------------------- CSV Input Format --------------------------------------- /** * Creates a CSV reader to read a comma separated value (CSV) file. The reader has options to * define parameters and field types and will eventually produce the DataSet that corresponds to * the read and parsed CSV input. * * @param filePath The path of the CSV file. * @return A CsvReader that can be used to configure the CSV input. */ public CsvReader readCsvFile(String filePath) { return new CsvReader(filePath, this); } // ------------------------------------ File Input Format ----------------------------------------- public DataSource readFile(FileInputFormat inputFormat, String filePath) { if (inputFormat == null) { throw new IllegalArgumentException("InputFormat must not be null."); } if (filePath == null) { throw new IllegalArgumentException("The file path must not be null."); } inputFormat.setFilePath(new Path(filePath)); try { return createInput(inputFormat, TypeExtractor.getInputFormatTypes(inputFormat)); } catch (Exception e) { throw new InvalidProgramException("The type returned by the input format could not be automatically determined. " + "Please specify the TypeInformation of the produced type explicitly by using the " + "'createInput(InputFormat, TypeInformation)' method instead."); } } // ----------------------------------- Generic Input Format --------------------------------------- /** * Generic method to create an input {@link DataSet} with in {@link InputFormat}. The DataSet will not be * immediately created - instead, this method returns a DataSet that will be lazily created from * the input format once the program is executed. * *

Since all data sets need specific information about their types, this method needs to determine * the type of the data produced by the input format. It will attempt to determine the data type * by reflection, unless the input format implements the {@link ResultTypeQueryable} interface. * In the latter case, this method will invoke the {@link ResultTypeQueryable#getProducedType()} * method to determine data type produced by the input format. * * @param inputFormat The input format used to create the data set. * @return A {@link DataSet} that represents the data created by the input format. * * @see #createInput(InputFormat, TypeInformation) */ public DataSource createInput(InputFormat inputFormat) { if (inputFormat == null) { throw new IllegalArgumentException("InputFormat must not be null."); } try { return createInput(inputFormat, TypeExtractor.getInputFormatTypes(inputFormat)); } catch (Exception e) { throw new InvalidProgramException("The type returned by the input format could not be automatically determined. " + "Please specify the TypeInformation of the produced type explicitly by using the " + "'createInput(InputFormat, TypeInformation)' method instead.", e); } } /** * Generic method to create an input DataSet with in {@link InputFormat}. The {@link DataSet} will not be * immediately created - instead, this method returns a {@link DataSet} that will be lazily created from * the input format once the program is executed. * *

The {@link DataSet} is typed to the given TypeInformation. This method is intended for input formats that * where the return type cannot be determined by reflection analysis, and that do not implement the * {@link ResultTypeQueryable} interface. * * @param inputFormat The input format used to create the data set. * @return A {@link DataSet} that represents the data created by the input format. * * @see #createInput(InputFormat) */ public DataSource createInput(InputFormat inputFormat, TypeInformation producedType) { if (inputFormat == null) { throw new IllegalArgumentException("InputFormat must not be null."); } if (producedType == null) { throw new IllegalArgumentException("Produced type information must not be null."); } return new DataSource<>(this, inputFormat, producedType, Utils.getCallLocationName()); } // ----------------------------------- Collection --------------------------------------- /** * Creates a DataSet from the given non-empty collection. The type of the data set is that * of the elements in the collection. * *

The framework will try and determine the exact type from the collection elements. * In case of generic elements, it may be necessary to manually supply the type information * via {@link #fromCollection(Collection, TypeInformation)}. * *

Note that this operation will result in a non-parallel data source, i.e. a data source with * a parallelism of one. * * @param data The collection of elements to create the data set from. * @return A DataSet representing the given collection. * * @see #fromCollection(Collection, TypeInformation) */ public DataSource fromCollection(Collection data) { if (data == null) { throw new IllegalArgumentException("The data must not be null."); } if (data.size() == 0) { throw new IllegalArgumentException("The size of the collection must not be empty."); } X firstValue = data.iterator().next(); TypeInformation type = TypeExtractor.getForObject(firstValue); CollectionInputFormat.checkCollection(data, type.getTypeClass()); return new DataSource<>(this, new CollectionInputFormat<>(data, type.createSerializer(config)), type, Utils.getCallLocationName()); } /** * Creates a DataSet from the given non-empty collection. Note that this operation will result * in a non-parallel data source, i.e. a data source with a parallelism of one. * *

The returned DataSet is typed to the given TypeInformation. * * @param data The collection of elements to create the data set from. * @param type The TypeInformation for the produced data set. * @return A DataSet representing the given collection. * * @see #fromCollection(Collection) */ public DataSource fromCollection(Collection data, TypeInformation type) { return fromCollection(data, type, Utils.getCallLocationName()); } private DataSource fromCollection(Collection data, TypeInformation type, String callLocationName) { CollectionInputFormat.checkCollection(data, type.getTypeClass()); return new DataSource<>(this, new CollectionInputFormat<>(data, type.createSerializer(config)), type, callLocationName); } /** * Creates a DataSet from the given iterator. Because the iterator will remain unmodified until * the actual execution happens, the type of data returned by the iterator must be given * explicitly in the form of the type class (this is due to the fact that the Java compiler * erases the generic type information). * *

Note that this operation will result in a non-parallel data source, i.e. a data source with * a parallelism of one. * * @param data The collection of elements to create the data set from. * @param type The class of the data produced by the iterator. Must not be a generic class. * @return A DataSet representing the elements in the iterator. * * @see #fromCollection(Iterator, TypeInformation) */ public DataSource fromCollection(Iterator data, Class type) { return fromCollection(data, TypeExtractor.getForClass(type)); } /** * Creates a DataSet from the given iterator. Because the iterator will remain unmodified until * the actual execution happens, the type of data returned by the iterator must be given * explicitly in the form of the type information. This method is useful for cases where the type * is generic. In that case, the type class (as given in {@link #fromCollection(Iterator, Class)} * does not supply all type information. * *

Note that this operation will result in a non-parallel data source, i.e. a data source with * a parallelism of one. * * @param data The collection of elements to create the data set from. * @param type The TypeInformation for the produced data set. * @return A DataSet representing the elements in the iterator. * * @see #fromCollection(Iterator, Class) */ public DataSource fromCollection(Iterator data, TypeInformation type) { return new DataSource<>(this, new IteratorInputFormat<>(data), type, Utils.getCallLocationName()); } /** * Creates a new data set that contains the given elements. The elements must all be of the same type, * for example, all of the {@link String} or {@link Integer}. The sequence of elements must not be empty. * *

The framework will try and determine the exact type from the collection elements. * In case of generic elements, it may be necessary to manually supply the type information * via {@link #fromCollection(Collection, TypeInformation)}. * *

Note that this operation will result in a non-parallel data source, i.e. a data source with * a parallelism of one. * * @param data The elements to make up the data set. * @return A DataSet representing the given list of elements. */ @SafeVarargs public final DataSource fromElements(X... data) { if (data == null) { throw new IllegalArgumentException("The data must not be null."); } if (data.length == 0) { throw new IllegalArgumentException("The number of elements must not be zero."); } TypeInformation typeInfo; try { typeInfo = TypeExtractor.getForObject(data[0]); } catch (Exception e) { throw new RuntimeException("Could not create TypeInformation for type " + data[0].getClass().getName() + "; please specify the TypeInformation manually via " + "ExecutionEnvironment#fromElements(Collection, TypeInformation)", e); } return fromCollection(Arrays.asList(data), typeInfo, Utils.getCallLocationName()); } /** * Creates a new data set that contains the given elements. The framework will determine the type according to the * based type user supplied. The elements should be the same or be the subclass to the based type. * The sequence of elements must not be empty. * Note that this operation will result in a non-parallel data source, i.e. a data source with * a parallelism of one. * * @param type The base class type for every element in the collection. * @param data The elements to make up the data set. * @return A DataSet representing the given list of elements. */ @SafeVarargs public final DataSource fromElements(Class type, X... data) { if (data == null) { throw new IllegalArgumentException("The data must not be null."); } if (data.length == 0) { throw new IllegalArgumentException("The number of elements must not be zero."); } TypeInformation typeInfo; try { typeInfo = TypeExtractor.getForClass(type); } catch (Exception e) { throw new RuntimeException("Could not create TypeInformation for type " + type.getName() + "; please specify the TypeInformation manually via " + "ExecutionEnvironment#fromElements(Collection, TypeInformation)", e); } return fromCollection(Arrays.asList(data), typeInfo, Utils.getCallLocationName()); } /** * Creates a new data set that contains elements in the iterator. The iterator is splittable, allowing the * framework to create a parallel data source that returns the elements in the iterator. * *

Because the iterator will remain unmodified until the actual execution happens, the type of data * returned by the iterator must be given explicitly in the form of the type class (this is due to the * fact that the Java compiler erases the generic type information). * * @param iterator The iterator that produces the elements of the data set. * @param type The class of the data produced by the iterator. Must not be a generic class. * @return A DataSet representing the elements in the iterator. * * @see #fromParallelCollection(SplittableIterator, TypeInformation) */ public DataSource fromParallelCollection(SplittableIterator iterator, Class type) { return fromParallelCollection(iterator, TypeExtractor.getForClass(type)); } /** * Creates a new data set that contains elements in the iterator. The iterator is splittable, allowing the * framework to create a parallel data source that returns the elements in the iterator. * *

Because the iterator will remain unmodified until the actual execution happens, the type of data * returned by the iterator must be given explicitly in the form of the type information. * This method is useful for cases where the type is generic. In that case, the type class * (as given in {@link #fromParallelCollection(SplittableIterator, Class)} does not supply all type information. * * @param iterator The iterator that produces the elements of the data set. * @param type The TypeInformation for the produced data set. * @return A DataSet representing the elements in the iterator. * * @see #fromParallelCollection(SplittableIterator, Class) */ public DataSource fromParallelCollection(SplittableIterator iterator, TypeInformation type) { return fromParallelCollection(iterator, type, Utils.getCallLocationName()); } // private helper for passing different call location names private DataSource fromParallelCollection(SplittableIterator iterator, TypeInformation type, String callLocationName) { return new DataSource<>(this, new ParallelIteratorInputFormat<>(iterator), type, callLocationName); } /** * Creates a new data set that contains a sequence of numbers. The data set will be created in parallel, * so there is no guarantee about the order of the elements. * * @param from The number to start at (inclusive). * @param to The number to stop at (inclusive). * @return A DataSet, containing all number in the {@code [from, to]} interval. */ public DataSource generateSequence(long from, long to) { return fromParallelCollection(new NumberSequenceIterator(from, to), BasicTypeInfo.LONG_TYPE_INFO, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Executing // -------------------------------------------------------------------------------------------- /** * Triggers the program execution. The environment will execute all parts of the program that have * resulted in a "sink" operation. Sink operations are for example printing results ({@link DataSet#print()}, * writing results (e.g. {@link DataSet#writeAsText(String)}, * {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other generic * data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * *

The program execution will be logged and displayed with a generated default name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception Thrown, if the program executions fails. */ public JobExecutionResult execute() throws Exception { return execute(getDefaultName()); } /** * Triggers the program execution. The environment will execute all parts of the program that have * resulted in a "sink" operation. Sink operations are for example printing results ({@link DataSet#print()}, * writing results (e.g. {@link DataSet#writeAsText(String)}, * {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other generic * data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * *

The program execution will be logged and displayed with the given job name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception Thrown, if the program executions fails. */ public abstract JobExecutionResult execute(String jobName) throws Exception; /** * Creates the plan with which the system will execute the program, and returns it as * a String using a JSON representation of the execution data flow graph. * Note that this needs to be called, before the plan is executed. * * @return The execution plan of the program, as a JSON String. * @throws Exception Thrown, if the compiler could not be instantiated, or the master could not * be contacted to retrieve information relevant to the execution planning. */ public abstract String getExecutionPlan() throws Exception; /** * Registers a file at the distributed cache under the given name. The file will be accessible * from any user-defined function in the (distributed) runtime under a local path. Files * may be local files (which will be distributed via BlobServer), or files in a distributed file system. * The runtime will copy the files temporarily to a local cache, if needed. * *

The {@link org.apache.flink.api.common.functions.RuntimeContext} can be obtained inside UDFs via * {@link org.apache.flink.api.common.functions.RichFunction#getRuntimeContext()} and provides access * {@link org.apache.flink.api.common.cache.DistributedCache} via * {@link org.apache.flink.api.common.functions.RuntimeContext#getDistributedCache()}. * * @param filePath The path of the file, as a URI (e.g. "file:///some/path" or "hdfs://host:port/and/path") * @param name The name under which the file is registered. */ public void registerCachedFile(String filePath, String name){ registerCachedFile(filePath, name, false); } /** * Registers a file at the distributed cache under the given name. The file will be accessible * from any user-defined function in the (distributed) runtime under a local path. Files * may be local files (which will be distributed via BlobServer), or files in a distributed file system. * The runtime will copy the files temporarily to a local cache, if needed. * *

The {@link org.apache.flink.api.common.functions.RuntimeContext} can be obtained inside UDFs via * {@link org.apache.flink.api.common.functions.RichFunction#getRuntimeContext()} and provides access * {@link org.apache.flink.api.common.cache.DistributedCache} via * {@link org.apache.flink.api.common.functions.RuntimeContext#getDistributedCache()}. * * @param filePath The path of the file, as a URI (e.g. "file:///some/path" or "hdfs://host:port/and/path") * @param name The name under which the file is registered. * @param executable flag indicating whether the file should be executable */ public void registerCachedFile(String filePath, String name, boolean executable){ this.cacheFile.add(new Tuple2<>(name, new DistributedCacheEntry(filePath, executable))); } /** * Registers all files that were registered at this execution environment's cache registry of the * given plan's cache registry. * * @param p The plan to register files at. * @throws IOException Thrown if checks for existence and sanity fail. */ protected void registerCachedFilesWithPlan(Plan p) throws IOException { for (Tuple2 entry : cacheFile) { p.registerCachedFile(entry.f0, entry.f1); } } /** * Creates the program's {@link Plan}. The plan is a description of all data sources, data sinks, * and operations and how they interact, as an isolated unit that can be executed with a * {@link org.apache.flink.api.common.PlanExecutor}. Obtaining a plan and starting it with an * executor is an alternative way to run a program and is only possible if the program consists * only of distributed operations. * This automatically starts a new stage of execution. * * @return The program's plan. */ @Internal public Plan createProgramPlan() { return createProgramPlan(null); } /** * Creates the program's {@link Plan}. The plan is a description of all data sources, data sinks, * and operations and how they interact, as an isolated unit that can be executed with a * {@link org.apache.flink.api.common.PlanExecutor}. Obtaining a plan and starting it with an * executor is an alternative way to run a program and is only possible if the program consists * only of distributed operations. * This automatically starts a new stage of execution. * * @param jobName The name attached to the plan (displayed in logs and monitoring). * @return The program's plan. */ @Internal public Plan createProgramPlan(String jobName) { return createProgramPlan(jobName, true); } /** * Creates the program's {@link Plan}. The plan is a description of all data sources, data sinks, * and operations and how they interact, as an isolated unit that can be executed with a * {@link org.apache.flink.api.common.PlanExecutor}. Obtaining a plan and starting it with an * executor is an alternative way to run a program and is only possible if the program consists * only of distributed operations. * * @param jobName The name attached to the plan (displayed in logs and monitoring). * @param clearSinks Whether or not to start a new stage of execution. * @return The program's plan. */ @Internal public Plan createProgramPlan(String jobName, boolean clearSinks) { if (this.sinks.isEmpty()) { if (wasExecuted) { throw new RuntimeException("No new data sinks have been defined since the " + "last execution. The last execution refers to the latest call to " + "'execute()', 'count()', 'collect()', or 'print()'."); } else { throw new RuntimeException("No data sinks have been created yet. " + "A program needs at least one sink that consumes data. " + "Examples are writing the data set or printing it."); } } if (jobName == null) { jobName = getDefaultName(); } OperatorTranslation translator = new OperatorTranslation(); Plan plan = translator.translateToPlan(this.sinks, jobName); if (getParallelism() > 0) { plan.setDefaultParallelism(getParallelism()); } plan.setExecutionConfig(getConfig()); // Check plan for GenericTypeInfo's and register the types at the serializers. if (!config.isAutoTypeRegistrationDisabled()) { plan.accept(new Visitor>() { private final Set> registeredTypes = new HashSet<>(); private final Set> visitedOperators = new HashSet<>(); @Override public boolean preVisit(org.apache.flink.api.common.operators.Operator visitable) { if (!visitedOperators.add(visitable)) { return false; } OperatorInformation opInfo = visitable.getOperatorInfo(); Serializers.recursivelyRegisterType(opInfo.getOutputType(), config, registeredTypes); return true; } @Override public void postVisit(org.apache.flink.api.common.operators.Operator visitable) {} }); } try { registerCachedFilesWithPlan(plan); } catch (Exception e) { throw new RuntimeException("Error while registering cached files: " + e.getMessage(), e); } // clear all the sinks such that the next execution does not redo everything if (clearSinks) { this.sinks.clear(); wasExecuted = true; } // All types are registered now. Print information. int registeredTypes = config.getRegisteredKryoTypes().size() + config.getRegisteredPojoTypes().size() + config.getRegisteredTypesWithKryoSerializerClasses().size() + config.getRegisteredTypesWithKryoSerializers().size(); int defaultKryoSerializers = config.getDefaultKryoSerializers().size() + config.getDefaultKryoSerializerClasses().size(); LOG.info("The job has {} registered types and {} default Kryo serializers", registeredTypes, defaultKryoSerializers); if (config.isForceKryoEnabled() && config.isForceAvroEnabled()) { LOG.warn("In the ExecutionConfig, both Avro and Kryo are enforced. Using Kryo serializer"); } if (config.isForceKryoEnabled()) { LOG.info("Using KryoSerializer for serializing POJOs"); } if (config.isForceAvroEnabled()) { LOG.info("Using AvroSerializer for serializing POJOs"); } if (LOG.isDebugEnabled()) { LOG.debug("Registered Kryo types: {}", config.getRegisteredKryoTypes().toString()); LOG.debug("Registered Kryo with Serializers types: {}", config.getRegisteredTypesWithKryoSerializers().entrySet().toString()); LOG.debug("Registered Kryo with Serializer Classes types: {}", config.getRegisteredTypesWithKryoSerializerClasses().entrySet().toString()); LOG.debug("Registered Kryo default Serializers: {}", config.getDefaultKryoSerializers().entrySet().toString()); LOG.debug("Registered Kryo default Serializers Classes {}", config.getDefaultKryoSerializerClasses().entrySet().toString()); LOG.debug("Registered POJO types: {}", config.getRegisteredPojoTypes().toString()); // print information about static code analysis LOG.debug("Static code analysis mode: {}", config.getCodeAnalysisMode()); } return plan; } /** * Adds the given sink to this environment. Only sinks that have been added will be executed once * the {@link #execute()} or {@link #execute(String)} method is called. * * @param sink The sink to add for execution. */ @Internal void registerDataSink(DataSink sink) { this.sinks.add(sink); } /** * Gets a default job name, based on the timestamp when this method is invoked. * * @return A default job name. */ private static String getDefaultName() { return "Flink Java Job at " + Calendar.getInstance().getTime(); } // -------------------------------------------------------------------------------------------- // Instantiation of Execution Contexts // -------------------------------------------------------------------------------------------- /** * Creates an execution environment that represents the context in which the program is currently executed. * If the program is invoked standalone, this method returns a local execution environment, as returned by * {@link #createLocalEnvironment()}. If the program is invoked from within the command line client to be * submitted to a cluster, this method returns the execution environment of this cluster. * * @return The execution environment of the context in which the program is executed. */ public static ExecutionEnvironment getExecutionEnvironment() { return contextEnvironmentFactory == null ? createLocalEnvironment() : contextEnvironmentFactory.createExecutionEnvironment(); } /** * Creates a {@link CollectionEnvironment} that uses Java Collections underneath. This will execute in a * single thread in the current JVM. It is very fast but will fail if the data does not fit into * memory. parallelism will always be 1. This is useful during implementation and for debugging. * @return A Collection Environment */ @PublicEvolving public static CollectionEnvironment createCollectionsEnvironment(){ CollectionEnvironment ce = new CollectionEnvironment(); ce.setParallelism(1); return ce; } /** * Creates a {@link LocalEnvironment}. The local execution environment will run the program in a * multi-threaded fashion in the same JVM as the environment was created in. The default * parallelism of the local environment is the number of hardware contexts (CPU cores / threads), * unless it was specified differently by {@link #setDefaultLocalParallelism(int)}. * * @return A local execution environment. */ public static LocalEnvironment createLocalEnvironment() { return createLocalEnvironment(defaultLocalDop); } /** * Creates a {@link LocalEnvironment}. The local execution environment will run the program in a * multi-threaded fashion in the same JVM as the environment was created in. It will use the * parallelism specified in the parameter. * * @param parallelism The parallelism for the local environment. * @return A local execution environment with the specified parallelism. */ public static LocalEnvironment createLocalEnvironment(int parallelism) { return createLocalEnvironment(new Configuration(), parallelism); } /** * Creates a {@link LocalEnvironment}. The local execution environment will run the program in a * multi-threaded fashion in the same JVM as the environment was created in. It will use the * parallelism specified in the parameter. * * @param customConfiguration Pass a custom configuration to the LocalEnvironment. * @return A local execution environment with the specified parallelism. */ public static LocalEnvironment createLocalEnvironment(Configuration customConfiguration) { return createLocalEnvironment(customConfiguration, -1); } /** * Creates a {@link LocalEnvironment} for local program execution that also starts the * web monitoring UI. * *

The local execution environment will run the program in a multi-threaded fashion in * the same JVM as the environment was created in. It will use the parallelism specified in the * parameter. * *

If the configuration key 'rest.port' was set in the configuration, that particular * port will be used for the web UI. Otherwise, the default port (8081) will be used. */ @PublicEvolving public static ExecutionEnvironment createLocalEnvironmentWithWebUI(Configuration conf) { checkNotNull(conf, "conf"); conf.setBoolean(ConfigConstants.LOCAL_START_WEBSERVER, true); if (!conf.contains(RestOptions.PORT)) { // explicitly set this option so that it's not set to 0 later conf.setInteger(RestOptions.PORT, RestOptions.PORT.defaultValue()); } return createLocalEnvironment(conf, -1); } /** * Creates a {@link LocalEnvironment} which is used for executing Flink jobs. * * @param configuration to start the {@link LocalEnvironment} with * @param defaultParallelism to initialize the {@link LocalEnvironment} with * @return {@link LocalEnvironment} */ private static LocalEnvironment createLocalEnvironment(Configuration configuration, int defaultParallelism) { final LocalEnvironment localEnvironment = new LocalEnvironment(configuration); if (defaultParallelism > 0) { localEnvironment.setParallelism(defaultParallelism); } return localEnvironment; } /** * Creates a {@link RemoteEnvironment}. The remote environment sends (parts of) the program * to a cluster for execution. Note that all file paths used in the program must be accessible from the * cluster. The execution will use the cluster's default parallelism, unless the parallelism is * set explicitly via {@link ExecutionEnvironment#setParallelism(int)}. * * @param host The host name or address of the master (JobManager), where the program should be executed. * @param port The port of the master (JobManager), where the program should be executed. * @param jarFiles The JAR files with code that needs to be shipped to the cluster. If the program uses * user-defined functions, user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static ExecutionEnvironment createRemoteEnvironment(String host, int port, String... jarFiles) { return new RemoteEnvironment(host, port, jarFiles); } /** * Creates a {@link RemoteEnvironment}. The remote environment sends (parts of) the program * to a cluster for execution. Note that all file paths used in the program must be accessible from the * cluster. The custom configuration file is used to configure Akka specific configuration parameters * for the Client only; Program parallelism can be set via {@link ExecutionEnvironment#setParallelism(int)}. * *

Cluster configuration has to be done in the remotely running Flink instance. * * @param host The host name or address of the master (JobManager), where the program should be executed. * @param port The port of the master (JobManager), where the program should be executed. * @param clientConfiguration Configuration used by the client that connects to the cluster. * @param jarFiles The JAR files with code that needs to be shipped to the cluster. If the program uses * user-defined functions, user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static ExecutionEnvironment createRemoteEnvironment( String host, int port, Configuration clientConfiguration, String... jarFiles) { return new RemoteEnvironment(host, port, clientConfiguration, jarFiles, null); } /** * Creates a {@link RemoteEnvironment}. The remote environment sends (parts of) the program * to a cluster for execution. Note that all file paths used in the program must be accessible from the * cluster. The execution will use the specified parallelism. * * @param host The host name or address of the master (JobManager), where the program should be executed. * @param port The port of the master (JobManager), where the program should be executed. * @param parallelism The parallelism to use during the execution. * @param jarFiles The JAR files with code that needs to be shipped to the cluster. If the program uses * user-defined functions, user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static ExecutionEnvironment createRemoteEnvironment(String host, int port, int parallelism, String... jarFiles) { RemoteEnvironment rec = new RemoteEnvironment(host, port, jarFiles); rec.setParallelism(parallelism); return rec; } // -------------------------------------------------------------------------------------------- // Default parallelism for local execution // -------------------------------------------------------------------------------------------- /** * Gets the default parallelism that will be used for the local execution environment created by * {@link #createLocalEnvironment()}. * * @return The default local parallelism */ public static int getDefaultLocalParallelism() { return defaultLocalDop; } /** * Sets the default parallelism that will be used for the local execution environment created by * {@link #createLocalEnvironment()}. * * @param parallelism The parallelism to use as the default local parallelism. */ public static void setDefaultLocalParallelism(int parallelism) { defaultLocalDop = parallelism; } // -------------------------------------------------------------------------------------------- // Methods to control the context environment and creation of explicit environments other // than the context environment // -------------------------------------------------------------------------------------------- /** * Sets a context environment factory, that creates the context environment for running programs * with pre-configured environments. Examples are running programs from the command line, and * running programs in the Scala shell. * *

When the context environment factory is set, no other environments can be explicitly used. * * @param ctx The context environment factory. */ protected static void initializeContextEnvironment(ExecutionEnvironmentFactory ctx) { contextEnvironmentFactory = Preconditions.checkNotNull(ctx); } /** * Un-sets the context environment factory. After this method is called, the call to * {@link #getExecutionEnvironment()} will again return a default local execution environment, and * it is possible to explicitly instantiate the LocalEnvironment and the RemoteEnvironment. */ protected static void resetContextEnvironment() { contextEnvironmentFactory = null; } /** * Checks whether it is currently permitted to explicitly instantiate a LocalEnvironment * or a RemoteEnvironment. * * @return True, if it is possible to explicitly instantiate a LocalEnvironment or a * RemoteEnvironment, false otherwise. */ @Internal public static boolean areExplicitEnvironmentsAllowed() { return contextEnvironmentFactory == null; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy