
org.apache.flink.ml.examples.classification.LinearSVCExample Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.classification;
import org.apache.flink.ml.classification.linearsvc.LinearSVC;
import org.apache.flink.ml.classification.linearsvc.LinearSVCModel;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/** Simple program that trains a LinearSVC model and uses it for classification. */
public class LinearSVCExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream inputStream =
env.fromElements(
Row.of(Vectors.dense(1, 2, 3, 4), 0., 1.),
Row.of(Vectors.dense(2, 2, 3, 4), 0., 2.),
Row.of(Vectors.dense(3, 2, 3, 4), 0., 3.),
Row.of(Vectors.dense(4, 2, 3, 4), 0., 4.),
Row.of(Vectors.dense(5, 2, 3, 4), 0., 5.),
Row.of(Vectors.dense(11, 2, 3, 4), 1., 1.),
Row.of(Vectors.dense(12, 2, 3, 4), 1., 2.),
Row.of(Vectors.dense(13, 2, 3, 4), 1., 3.),
Row.of(Vectors.dense(14, 2, 3, 4), 1., 4.),
Row.of(Vectors.dense(15, 2, 3, 4), 1., 5.));
Table inputTable = tEnv.fromDataStream(inputStream).as("features", "label", "weight");
// Creates a LinearSVC object and initializes its parameters.
LinearSVC linearSVC = new LinearSVC().setWeightCol("weight");
// Trains the LinearSVC Model.
LinearSVCModel linearSVCModel = linearSVC.fit(inputTable);
// Uses the LinearSVC Model for predictions.
Table outputTable = linearSVCModel.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
DenseVector features = (DenseVector) row.getField(linearSVC.getFeaturesCol());
double expectedResult = (Double) row.getField(linearSVC.getLabelCol());
double predictionResult = (Double) row.getField(linearSVC.getPredictionCol());
DenseVector rawPredictionResult =
(DenseVector) row.getField(linearSVC.getRawPredictionCol());
System.out.printf(
"Features: %-25s \tExpected Result: %s \tPrediction Result: %s \tRaw Prediction Result: %s\n",
features, expectedResult, predictionResult, rawPredictionResult);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy