org.apache.flink.ml.examples.feature.BucketizerExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.feature;
import org.apache.flink.ml.common.param.HasHandleInvalid;
import org.apache.flink.ml.feature.bucketizer.Bucketizer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
/** Simple program that creates a Bucketizer instance and uses it for feature engineering. */
public class BucketizerExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream inputStream = env.fromElements(Row.of(-0.5, 0.0, 1.0, 0.0));
Table inputTable = tEnv.fromDataStream(inputStream).as("f1", "f2", "f3", "f4");
// Creates a Bucketizer object and initializes its parameters.
Double[][] splitsArray =
new Double[][] {
new Double[] {-0.5, 0.0, 0.5},
new Double[] {-1.0, 0.0, 2.0},
new Double[] {Double.NEGATIVE_INFINITY, 10.0, Double.POSITIVE_INFINITY},
new Double[] {Double.NEGATIVE_INFINITY, 1.5, Double.POSITIVE_INFINITY}
};
Bucketizer bucketizer =
new Bucketizer()
.setInputCols("f1", "f2", "f3", "f4")
.setOutputCols("o1", "o2", "o3", "o4")
.setSplitsArray(splitsArray)
.setHandleInvalid(HasHandleInvalid.SKIP_INVALID);
// Uses the Bucketizer object for feature transformations.
Table outputTable = bucketizer.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
double[] inputValues = new double[bucketizer.getInputCols().length];
double[] outputValues = new double[bucketizer.getInputCols().length];
for (int i = 0; i < inputValues.length; i++) {
inputValues[i] = (double) row.getField(bucketizer.getInputCols()[i]);
outputValues[i] = (double) row.getField(bucketizer.getOutputCols()[i]);
}
System.out.printf(
"Input Values: %s\tOutput Values: %s\n",
Arrays.toString(inputValues), Arrays.toString(outputValues));
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy