
org.apache.flink.ml.examples.feature.NGramExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.feature;
import org.apache.flink.ml.feature.ngram.NGram;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
/** Simple program that creates an NGram instance and uses it for feature engineering. */
public class NGramExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream inputStream =
env.fromElements(
Row.of((Object) new String[0]),
Row.of((Object) new String[] {"a", "b", "c"}),
Row.of((Object) new String[] {"a", "b", "c", "d"}));
Table inputTable = tEnv.fromDataStream(inputStream).as("input");
// Creates an NGram object and initializes its parameters.
NGram nGram = new NGram().setN(2).setInputCol("input").setOutputCol("output");
// Uses the NGram object for feature transformations.
Table outputTable = nGram.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
String[] inputValue = (String[]) row.getField(nGram.getInputCol());
String[] outputValue = (String[]) row.getField(nGram.getOutputCol());
System.out.printf(
"Input Value: %s \tOutput Value: %s\n",
Arrays.toString(inputValue), Arrays.toString(outputValue));
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy