
org.apache.flink.ml.examples.feature.RobustScalerExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.feature;
import org.apache.flink.ml.feature.robustscaler.RobustScaler;
import org.apache.flink.ml.feature.robustscaler.RobustScalerModel;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/** Simple program that trains a {@link RobustScaler} model and uses it for feature selection. */
public class RobustScalerExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input training and prediction data.
DataStream trainStream =
env.fromElements(
Row.of(1, Vectors.dense(0.0, 0.0)),
Row.of(2, Vectors.dense(1.0, -1.0)),
Row.of(3, Vectors.dense(2.0, -2.0)),
Row.of(4, Vectors.dense(3.0, -3.0)),
Row.of(5, Vectors.dense(4.0, -4.0)),
Row.of(6, Vectors.dense(5.0, -5.0)),
Row.of(7, Vectors.dense(6.0, -6.0)),
Row.of(8, Vectors.dense(7.0, -7.0)),
Row.of(9, Vectors.dense(8.0, -8.0)));
Table trainTable = tEnv.fromDataStream(trainStream).as("id", "input");
// Creates a RobustScaler object and initializes its parameters.
RobustScaler robustScaler =
new RobustScaler()
.setLower(0.25)
.setUpper(0.75)
.setRelativeError(0.001)
.setWithScaling(true)
.setWithCentering(true);
// Trains the RobustScaler model.
RobustScalerModel model = robustScaler.fit(trainTable);
// Uses the RobustScaler model for predictions.
Table outputTable = model.transform(trainTable)[0];
// Extracts and displays the results.
for (CloseableIterator it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
DenseVector inputValue = (DenseVector) row.getField(robustScaler.getInputCol());
DenseVector outputValue = (DenseVector) row.getField(robustScaler.getOutputCol());
System.out.printf("Input Value: %-15s\tOutput Value: %s\n", inputValue, outputValue);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy