
org.apache.flink.ml.examples.feature.StringIndexerExample Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.feature;
import org.apache.flink.ml.feature.stringindexer.StringIndexer;
import org.apache.flink.ml.feature.stringindexer.StringIndexerModel;
import org.apache.flink.ml.feature.stringindexer.StringIndexerParams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
/** Simple program that trains a StringIndexer model and uses it for feature engineering. */
public class StringIndexerExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input training and prediction data.
DataStream trainStream =
env.fromElements(
Row.of("a", 1.0),
Row.of("b", 1.0),
Row.of("b", 2.0),
Row.of("c", 0.0),
Row.of("d", 2.0),
Row.of("a", 2.0),
Row.of("b", 2.0),
Row.of("b", -1.0),
Row.of("a", -1.0),
Row.of("c", -1.0));
Table trainTable = tEnv.fromDataStream(trainStream).as("inputCol1", "inputCol2");
DataStream predictStream =
env.fromElements(Row.of("a", 2.0), Row.of("b", 1.0), Row.of("c", 2.0));
Table predictTable = tEnv.fromDataStream(predictStream).as("inputCol1", "inputCol2");
// Creates a StringIndexer object and initializes its parameters.
StringIndexer stringIndexer =
new StringIndexer()
.setStringOrderType(StringIndexerParams.ALPHABET_ASC_ORDER)
.setInputCols("inputCol1", "inputCol2")
.setOutputCols("outputCol1", "outputCol2");
// Trains the StringIndexer Model.
StringIndexerModel model = stringIndexer.fit(trainTable);
// Uses the StringIndexer Model for predictions.
Table outputTable = model.transform(predictTable)[0];
// Extracts and displays the results.
for (CloseableIterator it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
Object[] inputValues = new Object[stringIndexer.getInputCols().length];
double[] outputValues = new double[stringIndexer.getInputCols().length];
for (int i = 0; i < inputValues.length; i++) {
inputValues[i] = row.getField(stringIndexer.getInputCols()[i]);
outputValues[i] = (double) row.getField(stringIndexer.getOutputCols()[i]);
}
System.out.printf(
"Input Values: %s \tOutput Values: %s\n",
Arrays.toString(inputValues), Arrays.toString(outputValues));
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy