
org.apache.flink.ml.examples.recommendation.SwingExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.recommendation;
import org.apache.flink.ml.recommendation.swing.Swing;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/**
* Simple program that creates a Swing instance and uses it to generate recommendations for items.
*/
public class SwingExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream inputStream =
env.fromElements(
Row.of(0L, 10L),
Row.of(0L, 11L),
Row.of(0L, 12L),
Row.of(1L, 13L),
Row.of(1L, 12L),
Row.of(2L, 10L),
Row.of(2L, 11L),
Row.of(2L, 12L),
Row.of(3L, 13L),
Row.of(3L, 12L));
Table inputTable = tEnv.fromDataStream(inputStream).as("user", "item");
// Creates a Swing object and initializes its parameters.
Swing swing = new Swing().setUserCol("user").setItemCol("item").setMinUserBehavior(1);
// Transforms the data.
Table[] outputTable = swing.transform(inputTable);
// Extracts and displays the result of swing algorithm.
for (CloseableIterator it = outputTable[0].execute().collect(); it.hasNext(); ) {
Row row = it.next();
long mainItem = row.getFieldAs(0);
String itemRankScore = row.getFieldAs(1);
System.out.printf("item: %d, top-k similar items: %s\n", mainItem, itemRankScore);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy