org.apache.flink.ml.classification.knn.KnnModel Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.classification.knn;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;
import org.apache.commons.lang3.ArrayUtils;
import java.io.IOException;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
/** A Model which classifies data using the model data computed by {@link Knn}. */
public class KnnModel implements Model, KnnModelParams {
private final Map, Object> paramMap = new HashMap<>();
private Table modelDataTable;
public KnnModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
public KnnModel setModelData(Table... inputs) {
modelDataTable = inputs[0];
return this;
}
@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}
@Override
@SuppressWarnings("unchecked")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream data = tEnv.toDataStream(inputs[0]);
DataStream knnModel = KnnModelData.getModelDataStream(modelDataTable);
final String broadcastModelKey = "broadcastModelKey";
RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(
inputTypeInfo.getFieldTypes(), BasicTypeInfo.DOUBLE_TYPE_INFO),
ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol()));
DataStream output =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(data),
Collections.singletonMap(broadcastModelKey, knnModel),
inputList -> {
DataStream input = inputList.get(0);
return input.map(
new PredictLabelFunction(
broadcastModelKey, getK(), getFeaturesCol()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(output)};
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
ReadWriteUtils.saveModelData(
KnnModelData.getModelDataStream(modelDataTable),
path,
new KnnModelData.ModelDataEncoder());
}
/**
* Loads model data from path.
*
* @param tEnv A StreamTableEnvironment instance.
* @param path Model path.
* @return Knn model.
*/
public static KnnModel load(StreamTableEnvironment tEnv, String path) throws IOException {
KnnModel model = ReadWriteUtils.loadStageParam(path);
Table modelDataTable =
ReadWriteUtils.loadModelData(tEnv, path, new KnnModelData.ModelDataDecoder());
return model.setModelData(modelDataTable);
}
/** This operator loads model data and predicts result. */
private static class PredictLabelFunction extends RichMapFunction {
private final String featureCol;
private KnnModelData knnModelData;
private final int k;
private final String broadcastKey;
private DenseVector distanceVector;
public PredictLabelFunction(String broadcastKey, int k, String featureCol) {
this.k = k;
this.broadcastKey = broadcastKey;
this.featureCol = featureCol;
}
@Override
public Row map(Row row) {
if (knnModelData == null) {
knnModelData =
(KnnModelData)
getRuntimeContext().getBroadcastVariable(broadcastKey).get(0);
distanceVector = new DenseVector(knnModelData.labels.size());
}
DenseVector feature = ((Vector) row.getField(featureCol)).toDense();
double prediction = predictLabel(feature);
return Row.join(row, Row.of(prediction));
}
private double predictLabel(DenseVector feature) {
double normSquare = Math.pow(BLAS.norm2(feature), 2);
BLAS.gemv(-2.0, knnModelData.packedFeatures, true, feature, 0.0, distanceVector);
for (int i = 0; i < distanceVector.size(); i++) {
distanceVector.values[i] =
Math.sqrt(
Math.abs(
distanceVector.values[i]
+ normSquare
+ knnModelData.featureNormSquares.values[i]));
}
PriorityQueue> nearestKNeighbors =
new PriorityQueue<>(
Comparator.comparingDouble(distanceAndLabel -> -distanceAndLabel.f0));
double[] labelValues = knnModelData.labels.values;
for (int i = 0; i < labelValues.length; ++i) {
if (nearestKNeighbors.size() < k) {
nearestKNeighbors.add(Tuple2.of(distanceVector.get(i), labelValues[i]));
} else {
Tuple2 currentFarthestNeighbor = nearestKNeighbors.peek();
if (currentFarthestNeighbor.f0 > distanceVector.get(i)) {
nearestKNeighbors.poll();
nearestKNeighbors.add(Tuple2.of(distanceVector.get(i), labelValues[i]));
}
}
}
Map labelWeights = new HashMap<>(nearestKNeighbors.size());
while (!nearestKNeighbors.isEmpty()) {
Tuple2 distanceAndLabel = nearestKNeighbors.poll();
labelWeights.merge(distanceAndLabel.f1, 1.0, Double::sum);
}
double maxWeight = 0.0;
double predictedLabel = -1.0;
for (Map.Entry entry : labelWeights.entrySet()) {
if (entry.getValue() > maxWeight) {
maxWeight = entry.getValue();
predictedLabel = entry.getKey();
}
}
return predictedLabel;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy