All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.classification.knn.KnnModelData Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.classification.knn;

import org.apache.flink.api.common.serialization.Encoder;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.file.src.reader.SimpleStreamFormat;
import org.apache.flink.core.fs.FSDataInputStream;
import org.apache.flink.core.memory.DataInputView;
import org.apache.flink.core.memory.DataInputViewStreamWrapper;
import org.apache.flink.core.memory.DataOutputView;
import org.apache.flink.core.memory.DataOutputViewStreamWrapper;
import org.apache.flink.ml.linalg.DenseMatrix;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Matrix;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.typeinfo.DenseMatrixSerializer;
import org.apache.flink.ml.linalg.typeinfo.DenseVectorSerializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;

import java.io.EOFException;
import java.io.IOException;
import java.io.OutputStream;

/**
 * Model data of {@link KnnModel}.
 *
 * 

This class also provides methods to convert model data from Table to a data stream, and * classes to save/load model data. */ public class KnnModelData { public DenseMatrix packedFeatures; public DenseVector featureNormSquares; public DenseVector labels; public KnnModelData() {} public KnnModelData( DenseMatrix packedFeatures, DenseVector featureNormSquares, DenseVector labels) { this.packedFeatures = packedFeatures; this.featureNormSquares = featureNormSquares; this.labels = labels; } /** * Converts the table model to a data stream. * * @param modelDataTable The table model data. * @return The data stream model data. */ public static DataStream getModelDataStream(Table modelDataTable) { StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) modelDataTable).getTableEnvironment(); return tEnv.toDataStream(modelDataTable) .map( x -> new KnnModelData( ((Matrix) x.getField(0)).toDense(), ((Vector) x.getField(1)).toDense(), ((Vector) x.getField(2)).toDense())); } /** Encoder for {@link KnnModelData}. */ public static class ModelDataEncoder implements Encoder { private final DenseVectorSerializer serializer = new DenseVectorSerializer(); @Override public void encode(KnnModelData modelData, OutputStream outputStream) throws IOException { DataOutputView dataOutputView = new DataOutputViewStreamWrapper(outputStream); DenseMatrixSerializer.INSTANCE.serialize(modelData.packedFeatures, dataOutputView); serializer.serialize(modelData.featureNormSquares, dataOutputView); serializer.serialize(modelData.labels, dataOutputView); } } /** Decoder for {@link KnnModelData}. */ public static class ModelDataDecoder extends SimpleStreamFormat { @Override public Reader createReader(Configuration config, FSDataInputStream stream) { return new Reader() { private final DataInputView source = new DataInputViewStreamWrapper(stream); private final DenseVectorSerializer serializer = new DenseVectorSerializer(); @Override public KnnModelData read() throws IOException { try { DenseMatrix matrix = DenseMatrixSerializer.INSTANCE.deserialize(source); DenseVector normSquares = serializer.deserialize(source); DenseVector labels = serializer.deserialize(source); return new KnnModelData(matrix, normSquares, labels); } catch (EOFException e) { return null; } } @Override public void close() throws IOException { stream.close(); } }; } @Override public TypeInformation getProducedType() { return TypeInformation.of(KnnModelData.class); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy