org.apache.flink.ml.classification.linearsvc.LinearSVCModel Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.classification.linearsvc;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.DenseVectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;
import org.apache.commons.lang3.ArrayUtils;
import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/** A Model which classifies data using the model data computed by {@link LinearSVC}. */
public class LinearSVCModel implements Model, LinearSVCModelParams {
private final Map, Object> paramMap = new HashMap<>();
private Table modelDataTable;
public LinearSVCModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
@SuppressWarnings("unchecked")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream inputStream = tEnv.toDataStream(inputs[0]);
final String broadcastModelKey = "broadcastModelKey";
DataStream modelDataStream =
LinearSVCModelData.getModelDataStream(modelDataTable);
RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(
inputTypeInfo.getFieldTypes(),
BasicTypeInfo.DOUBLE_TYPE_INFO,
DenseVectorTypeInfo.INSTANCE),
ArrayUtils.addAll(
inputTypeInfo.getFieldNames(),
getPredictionCol(),
getRawPredictionCol()));
DataStream predictionResult =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(inputStream),
Collections.singletonMap(broadcastModelKey, modelDataStream),
inputList -> {
DataStream inputData = inputList.get(0);
return inputData.map(
new PredictLabelFunction(
broadcastModelKey, getFeaturesCol(), getThreshold()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(predictionResult)};
}
@Override
public LinearSVCModel setModelData(Table... inputs) {
modelDataTable = inputs[0];
return this;
}
@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
ReadWriteUtils.saveModelData(
LinearSVCModelData.getModelDataStream(modelDataTable),
path,
new LinearSVCModelData.ModelDataEncoder());
}
public static LinearSVCModel load(StreamTableEnvironment tEnv, String path) throws IOException {
LinearSVCModel model = ReadWriteUtils.loadStageParam(path);
Table modelDataTable =
ReadWriteUtils.loadModelData(tEnv, path, new LinearSVCModelData.ModelDataDecoder());
return model.setModelData(modelDataTable);
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
/** A utility function used for prediction. */
private static class PredictLabelFunction extends RichMapFunction {
private final String broadcastModelKey;
private final String featuresCol;
private final double threshold;
private DenseVector coefficient;
public PredictLabelFunction(
String broadcastModelKey, String featuresCol, double threshold) {
this.broadcastModelKey = broadcastModelKey;
this.featuresCol = featuresCol;
this.threshold = threshold;
}
@Override
public Row map(Row dataPoint) {
if (coefficient == null) {
LinearSVCModelData modelData =
(LinearSVCModelData)
getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0);
coefficient = modelData.coefficient;
}
DenseVector features = ((Vector) dataPoint.getField(featuresCol)).toDense();
Row predictionResult = predictOneDataPoint(features, coefficient, threshold);
return Row.join(dataPoint, predictionResult);
}
}
/**
* The main logic that predicts one input data point.
*
* @param feature The input feature.
* @param coefficient The model parameters.
* @param threshold The threshold for prediction.
* @return The prediction label and the raw predictions.
*/
private static Row predictOneDataPoint(
DenseVector feature, DenseVector coefficient, double threshold) {
double dotValue = BLAS.dot(feature, coefficient);
return Row.of(dotValue >= threshold ? 1.0 : 0.0, Vectors.dense(dotValue, -dotValue));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy