org.apache.flink.ml.classification.logisticregression.LogisticRegressionModelDataUtil Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.classification.logisticregression;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.Encoder;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.file.src.reader.SimpleStreamFormat;
import org.apache.flink.core.fs.FSDataInputStream;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import java.io.ByteArrayOutputStream;
import java.io.EOFException;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Random;
/**
* The utility class which provides methods to convert model data from Table to Datastream, and
* classes to save/load model data.
*/
public class LogisticRegressionModelDataUtil {
/**
* Generates a Table containing a {@link LogisticRegressionModelData} instance with randomly
* generated coefficient.
*
* @param tEnv The environment where to create the table.
* @param dim The size of generated coefficient.
* @param seed Random seed.
*/
public static Table generateRandomModelData(StreamTableEnvironment tEnv, int dim, int seed) {
StreamExecutionEnvironment env = TableUtils.getExecutionEnvironment(tEnv);
return tEnv.fromDataStream(
env.fromElements(1).map(new RandomModelDataGenerator(dim, seed)));
}
private static class RandomModelDataGenerator
implements MapFunction {
private final int dim;
private final int seed;
public RandomModelDataGenerator(int dim, int seed) {
this.dim = dim;
this.seed = seed;
}
@Override
public LogisticRegressionModelData map(Integer integer) throws Exception {
DenseVector vector = new DenseVector(dim);
Random random = new Random(seed);
for (int j = 0; j < dim; j++) {
vector.values[j] = random.nextDouble();
}
return new LogisticRegressionModelData(vector, 0L);
}
}
/**
* Converts the table model to a data stream.
*
* @param modelData The table model data.
* @return The data stream model data.
*/
public static DataStream getModelDataStream(Table modelData) {
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) modelData).getTableEnvironment();
return tEnv.toDataStream(modelData)
.map(x -> new LogisticRegressionModelData(x.getFieldAs(0), x.getFieldAs(1)));
}
/**
* Converts the table model to a data stream of bytes.
*
* @param modelDataTable The table of model data.
* @return The data stream of serialized model data.
*/
public static DataStream getModelDataByteStream(Table modelDataTable) {
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) modelDataTable).getTableEnvironment();
return tEnv.toDataStream(modelDataTable)
.map(
x -> {
LogisticRegressionModelData modelData =
new LogisticRegressionModelData(
x.getFieldAs(0), x.getFieldAs(1));
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
modelData.encode(outputStream);
return outputStream.toByteArray();
});
}
/** Data encoder for {@link LogisticRegression} and {@link OnlineLogisticRegression}. */
public static class ModelDataEncoder implements Encoder {
@Override
public void encode(LogisticRegressionModelData modelData, OutputStream outputStream)
throws IOException {
modelData.encode(outputStream);
}
}
/** Data decoder for {@link LogisticRegression} and {@link OnlineLogisticRegression}. */
public static class ModelDataDecoder extends SimpleStreamFormat {
@Override
public Reader createReader(
Configuration configuration, FSDataInputStream inputStream) {
return new Reader() {
@Override
public LogisticRegressionModelData read() throws IOException {
try {
return LogisticRegressionModelData.decode(inputStream);
} catch (EOFException e) {
return null;
}
}
@Override
public void close() throws IOException {
inputStream.close();
}
};
}
@Override
public TypeInformation getProducedType() {
return TypeInformation.of(LogisticRegressionModelData.class);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy