
org.apache.flink.ml.clustering.kmeans.KMeansModel Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.clustering.kmeans;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.clustering.kmeans.KMeansModelData.ModelDataDecoder;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.common.distance.DistanceMeasure;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.VectorWithNorm;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;
import org.apache.commons.lang3.ArrayUtils;
import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/** A Model which clusters data into k clusters using the model data computed by {@link KMeans}. */
public class KMeansModel implements Model, KMeansModelParams {
private final Map, Object> paramMap = new HashMap<>();
private Table modelDataTable;
public KMeansModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
public KMeansModel setModelData(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
modelDataTable = inputs[0];
return this;
}
@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}
@Override
@SuppressWarnings("unchecked")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream modelDataStream =
KMeansModelData.getModelDataStream(modelDataTable);
RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), Types.INT),
ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol()));
final String broadcastModelKey = "broadcastModelKey";
DataStream predictionResult =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(tEnv.toDataStream(inputs[0])),
Collections.singletonMap(broadcastModelKey, modelDataStream),
inputList -> {
DataStream inputData = inputList.get(0);
return inputData.map(
new PredictLabelFunction(
broadcastModelKey,
getFeaturesCol(),
DistanceMeasure.getInstance(getDistanceMeasure()),
getK()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(predictionResult)};
}
/** A utility function used for prediction. */
private static class PredictLabelFunction extends RichMapFunction {
private final String broadcastModelKey;
private final String featuresCol;
private final DistanceMeasure distanceMeasure;
private final int k;
private VectorWithNorm[] centroids;
public PredictLabelFunction(
String broadcastModelKey,
String featuresCol,
DistanceMeasure distanceMeasure,
int k) {
this.broadcastModelKey = broadcastModelKey;
this.featuresCol = featuresCol;
this.distanceMeasure = distanceMeasure;
this.k = k;
}
@Override
public Row map(Row dataPoint) {
if (centroids == null) {
KMeansModelData modelData =
(KMeansModelData)
getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0);
Preconditions.checkArgument(modelData.centroids.length <= k);
centroids = new VectorWithNorm[modelData.centroids.length];
for (int i = 0; i < modelData.centroids.length; i++) {
centroids[i] = new VectorWithNorm(modelData.centroids[i]);
}
}
DenseVector point = ((Vector) dataPoint.getField(featuresCol)).toDense();
int closestCentroidId =
distanceMeasure.findClosest(centroids, new VectorWithNorm(point));
return Row.join(dataPoint, Row.of(closestCentroidId));
}
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveModelData(
KMeansModelData.getModelDataStream(modelDataTable),
path,
new KMeansModelData.ModelDataEncoder());
ReadWriteUtils.saveMetadata(this, path);
}
// TODO: Add INFO level logging.
public static KMeansModel load(StreamTableEnvironment tEnv, String path) throws IOException {
Table modelDataTable = ReadWriteUtils.loadModelData(tEnv, path, new ModelDataDecoder());
KMeansModel model = ReadWriteUtils.loadStageParam(path);
return model.setModelData(modelDataTable);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy