All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.bucketizer.Bucketizer Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.bucketizer;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Transformer;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.common.param.HasHandleInvalid;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

/**
 * A Transformer that maps multiple columns of continuous features to multiple columns of discrete
 * features, i.e., buckets indices. The indices are in [0, numSplitsInThisColumn - 1].
 *
 * 

The `keep` option of {@link HasHandleInvalid} means that we put the invalid data in the last * bucket of the splits, whose index is the number of the buckets. */ public class Bucketizer implements Transformer, BucketizerParams { private final Map, Object> paramMap = new HashMap<>(); public Bucketizer() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public Table[] transform(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); String[] inputCols = getInputCols(); String[] outputCols = getOutputCols(); Double[][] splitsArray = getSplitsArray(); Preconditions.checkArgument(inputCols.length == outputCols.length); Preconditions.checkArgument(inputCols.length == splitsArray.length); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); TypeInformation[] outputTypes = new TypeInformation[outputCols.length]; Arrays.fill(outputTypes, BasicTypeInfo.DOUBLE_TYPE_INFO); RowTypeInfo outputTypeInfo = new RowTypeInfo( ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), outputTypes), ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCols())); int[] inputColumnIndexes = TableUtils.getColumnIndexes(inputs[0].getResolvedSchema(), inputCols); DataStream result = tEnv.toDataStream(inputs[0]) .flatMap( new FindBucketFunction( inputColumnIndexes, splitsArray, getHandleInvalid()), outputTypeInfo); return new Table[] {tEnv.fromDataStream(result)}; } /** Finds the bucket index for each continuous feature of an input data point. */ private static class FindBucketFunction implements FlatMapFunction { private final int[] inputCols; private final String handleInvalid; private final Double[][] splitsArray; public FindBucketFunction(int[] inputCols, Double[][] splitsArray, String handleInvalid) { this.inputCols = inputCols; this.splitsArray = splitsArray; this.handleInvalid = handleInvalid; } @Override public void flatMap(Row value, Collector out) { Row outputRow = new Row(inputCols.length); for (int i = 0; i < inputCols.length; i++) { double feature = ((Number) value.getField(inputCols[i])).doubleValue(); Double[] splits = splitsArray[i]; boolean isInvalid = false; if (!Double.isNaN(feature)) { double index = Arrays.binarySearch(splits, feature); if (index >= 0) { if (index == splits.length - 1) { index--; } outputRow.setField(i, index); } else { index = -index - 1; if (index == 0 || index == splits.length) { isInvalid = true; } else { outputRow.setField(i, index - 1); } } } else { isInvalid = true; } if (isInvalid) { switch (handleInvalid) { case ERROR_INVALID: throw new RuntimeException( "The input contains invalid value. See " + HANDLE_INVALID + " parameter for more options."); case SKIP_INVALID: return; case KEEP_INVALID: outputRow.setField(i, (double) splits.length - 1); break; default: throw new UnsupportedOperationException( "Unsupported " + HANDLE_INVALID + " type: " + handleInvalid); } } } out.collect(Row.join(value, outputRow)); } } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); } public static Bucketizer load(StreamTableEnvironment tEnv, String path) throws IOException { return ReadWriteUtils.loadStageParam(path); } @Override public Map, Object> getParamMap() { return paramMap; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy