All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.imputer.Imputer Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.imputer;

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.ml.api.Estimator;
import org.apache.flink.ml.common.datastream.DataStreamUtils;
import org.apache.flink.ml.common.util.QuantileSummary;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.FlinkRuntimeException;
import org.apache.flink.util.Preconditions;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

/**
 * The imputer for completing missing values of the input columns.
 *
 * 

Missing values can be imputed using the statistics(mean, median or most frequent) of each * column in which the missing values are located. The input columns should be of numeric type. * *

Note that the mean/median/most_frequent value is computed after filtering out missing values. * All null values in the input columns are also treated as missing, and so are imputed. */ public class Imputer implements Estimator, ImputerParams { private final Map, Object> paramMap = new HashMap<>(); public Imputer() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public ImputerModel fit(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); Preconditions.checkArgument( getInputCols().length == getOutputCols().length, "Num of input columns and output columns are inconsistent."); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); DataStream inputData = tEnv.toDataStream(inputs[0]); DataStream modelData; switch (getStrategy()) { case MEAN: modelData = DataStreamUtils.aggregate( inputData, new MeanStrategyAggregator(getInputCols(), getMissingValue()), Types.MAP(Types.STRING, Types.TUPLE(Types.DOUBLE, Types.LONG)), ImputerModelData.TYPE_INFO); break; case MEDIAN: modelData = DataStreamUtils.aggregate( inputData, new MedianStrategyAggregator( getInputCols(), getMissingValue(), getRelativeError()), Types.MAP(Types.STRING, TypeInformation.of(QuantileSummary.class)), ImputerModelData.TYPE_INFO); break; case MOST_FREQUENT: modelData = DataStreamUtils.aggregate( inputData, new MostFrequentStrategyAggregator( getInputCols(), getMissingValue()), Types.MAP(Types.STRING, Types.MAP(Types.DOUBLE, Types.LONG)), ImputerModelData.TYPE_INFO); break; default: throw new RuntimeException("Unsupported strategy of Imputer: " + getStrategy()); } Schema schema = Schema.newBuilder() .column("surrogates", DataTypes.MAP(DataTypes.STRING(), DataTypes.DOUBLE())) .build(); ImputerModel model = new ImputerModel().setModelData(tEnv.fromDataStream(modelData, schema)); ParamUtils.updateExistingParams(model, getParamMap()); return model; } /** * A stream operator to compute the mean value of all input columns of the input bounded data * stream. */ private static class MeanStrategyAggregator implements AggregateFunction>, ImputerModelData> { private final String[] columnNames; private final double missingValue; public MeanStrategyAggregator(String[] columnNames, double missingValue) { this.columnNames = columnNames; this.missingValue = missingValue; } @Override public Map> createAccumulator() { Map> accumulators = new HashMap<>(); Arrays.stream(columnNames).forEach(x -> accumulators.put(x, Tuple2.of(0.0, 0L))); return accumulators; } @Override public Map> add( Row row, Map> accumulators) { accumulators.forEach( (col, sumAndNum) -> { Object rawValue = row.getField(col); if (rawValue != null) { Double value = Double.valueOf(rawValue.toString()); if (!value.equals(missingValue) && !value.equals(Double.NaN)) { sumAndNum.f0 += value; sumAndNum.f1 += 1; } } }); return accumulators; } @Override public ImputerModelData getResult(Map> map) { long numRows = map.entrySet().stream().findFirst().get().getValue().f1; Preconditions.checkState( numRows > 0, "The training set is empty or does not contains valid data."); Map surrogates = new HashMap<>(); map.forEach((col, sumAndNum) -> surrogates.put(col, sumAndNum.f0 / sumAndNum.f1)); return new ImputerModelData(surrogates); } @Override public Map> merge( Map> acc1, Map> acc2) { Preconditions.checkArgument(acc1.size() == acc2.size()); acc1.forEach( (col, numAndSum) -> { acc2.get(col).f0 += numAndSum.f0; acc2.get(col).f1 += numAndSum.f1; }); return acc2; } } /** * A stream operator to compute the median value of all input columns of the input bounded data * stream. */ private static class MedianStrategyAggregator implements AggregateFunction, ImputerModelData> { private final String[] columnNames; private final double missingValue; private final double relativeError; public MedianStrategyAggregator( String[] columnNames, double missingValue, double relativeError) { this.columnNames = columnNames; this.missingValue = missingValue; this.relativeError = relativeError; } @Override public Map createAccumulator() { Map summaries = new HashMap<>(); Arrays.stream(columnNames) .forEach(x -> summaries.put(x, new QuantileSummary(relativeError))); return summaries; } @Override public Map add(Row row, Map summaries) { summaries.forEach( (col, summary) -> { Object rawValue = row.getField(col); if (rawValue != null) { Double value = Double.valueOf(rawValue.toString()); if (!value.equals(missingValue) && !value.equals(Double.NaN)) { summary.insert(value); } } }); return summaries; } @Override public ImputerModelData getResult(Map summaries) { Map surrogates = new HashMap<>(); summaries.forEach( (col, summary) -> { QuantileSummary compressed = summary.compress(); if (compressed.isEmpty()) { throw new FlinkRuntimeException( String.format( "Surrogate cannot be computed. All the values in column [%s] are null, NaN or missingValue.", col)); } double median = compressed.query(0.5); surrogates.put(col, median); }); return new ImputerModelData(surrogates); } @Override public Map merge( Map acc1, Map acc2) { Preconditions.checkArgument(acc1.size() == acc2.size()); acc1.forEach( (col, summary1) -> { QuantileSummary summary2 = acc2.get(col).compress(); acc2.put(col, summary2.merge(summary1.compress())); }); return acc2; } } /** * A stream operator to compute the most frequent value of all input columns of the input * bounded data stream. */ private static class MostFrequentStrategyAggregator implements AggregateFunction>, ImputerModelData> { private final String[] columnNames; private final double missingValue; public MostFrequentStrategyAggregator(String[] columnNames, double missingValue) { this.columnNames = columnNames; this.missingValue = missingValue; } @Override public Map> createAccumulator() { Map> accumulators = new HashMap<>(); Arrays.stream(columnNames).forEach(x -> accumulators.put(x, new HashMap<>())); return accumulators; } @Override public Map> add( Row row, Map> accumulators) { accumulators.forEach( (col, counts) -> { Object rawValue = row.getField(col); if (rawValue != null) { Double value = Double.valueOf(rawValue.toString()); if (!value.equals(missingValue) && !value.equals(Double.NaN)) { if (counts.containsKey(value)) { counts.put(value, counts.get(value) + 1); } else { counts.put(value, 1L); } } } }); return accumulators; } @Override public ImputerModelData getResult(Map> map) { long validColumns = map.entrySet().stream().filter(x -> x.getValue().size() > 0).count(); Preconditions.checkState( validColumns > 0, "The training set is empty or does not contains valid data."); Map surrogates = new HashMap<>(); map.forEach( (col, counts) -> { long maxCnt = Long.MIN_VALUE; double value = Double.NaN; for (Map.Entry entry : counts.entrySet()) { if (maxCnt <= entry.getValue()) { value = maxCnt == entry.getValue() ? Math.min(entry.getKey(), value) : entry.getKey(); maxCnt = entry.getValue(); } } surrogates.put(col, value); }); return new ImputerModelData(surrogates); } @Override public Map> merge( Map> acc1, Map> acc2) { Preconditions.checkArgument(acc1.size() == acc2.size()); acc1.forEach( (col, counts) -> { Map map = acc2.get(col); counts.forEach( (value, cnt) -> { if (map.containsKey(value)) { map.put(value, cnt + map.get(value)); } else { map.put(value, cnt); } }); }); return acc2; } } @Override public Map, Object> getParamMap() { return paramMap; } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); } public static Imputer load(StreamTableEnvironment tEnv, String path) throws IOException { return ReadWriteUtils.loadStageParam(path); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy