All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.interaction.Interaction Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.interaction;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Transformer;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.SparseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.VectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

/**
 * A Transformer that takes vector or numerical columns, and generates a single vector column that
 * contains the product of all combinations of one value from each input column.
 *
 * 

For example, when the input feature values are Double(2) and Vector(3, 4), the output would be * Vector(6, 8). When the input feature values are Vector(1, 2) and Vector(3, 4), the output would * be Vector(3, 4, 6, 8). If you change the position of these two input Vectors, the output would be * Vector(3, 6, 4, 8). */ public class Interaction implements Transformer, InteractionParams { private final Map, Object> paramMap = new HashMap<>(); public Interaction() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public Table[] transform(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); RowTypeInfo outputTypeInfo = new RowTypeInfo( ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), VectorTypeInfo.INSTANCE), ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCol())); DataStream output = tEnv.toDataStream(inputs[0]) .map(new InteractionFunction(getInputCols()), outputTypeInfo); Table outputTable = tEnv.fromDataStream(output); return new Table[] {outputTable}; } private static class InteractionFunction implements MapFunction { private final String[] inputCols; private final int[] featureSize; private final int[][] featureIndices; private final double[][] featureValues; public InteractionFunction(String[] inputCols) { this.inputCols = inputCols; this.featureSize = new int[inputCols.length]; this.featureIndices = new int[inputCols.length][]; this.featureValues = new double[inputCols.length][]; } @Override public Row map(Row value) { int nnz = 1; boolean hasSparse = false; for (int i = 0; i < inputCols.length; ++i) { Object obj = value.getField(inputCols[i]); if (obj == null) { return Row.join(value, Row.of((Object) null)); } if (obj instanceof DenseVector) { featureSize[i] = ((Vector) obj).size(); if (featureIndices[i] == null || featureIndices[i].length != featureSize[i]) { featureIndices[i] = new int[featureSize[i]]; for (int j = 0; j < featureSize[i]; ++j) { featureIndices[i][j] = j; } } featureValues[i] = ((DenseVector) obj).values; nnz *= featureSize[i]; } else if (obj instanceof SparseVector) { featureSize[i] = ((Vector) obj).size(); featureIndices[i] = ((SparseVector) obj).indices; featureValues[i] = ((SparseVector) obj).values; nnz *= ((SparseVector) obj).values.length; hasSparse = true; } else { featureSize[i] = 1; featureIndices[i] = new int[] {0}; featureValues[i] = new double[] {Double.parseDouble(obj.toString())}; } } Vector ret; int featureIter = inputCols.length - 1; if (hasSparse) { int[] indices = new int[nnz]; double[] values = new double[nnz]; Arrays.fill(values, 1.0); int offset = 1; int size = 1; while (featureIter >= 0) { int[] prevIndices = featureIndices[featureIter]; double[] prevValues = featureValues[featureIter]; for (int i = 0; i < nnz / offset; ++i) { int idxOffset = i * offset; int idx = i % prevValues.length; for (int j = 0; j < offset; ++j) { values[idxOffset + j] *= prevValues[idx]; indices[idxOffset + j] += prevIndices[idx] * size; } } offset *= prevValues.length; size *= featureSize[featureIter--]; } ret = Vectors.sparse(size, indices, values); } else { double[] values = new double[nnz]; Arrays.fill(values, 1.0); int idxOffset = 1; while (featureIter >= 0) { double[] prevValues = featureValues[featureIter--]; for (int i = 0; i < nnz / idxOffset; ++i) { int innerOffset = i * idxOffset; int idx = i % prevValues.length; for (int j = 0; j < idxOffset; ++j) { values[innerOffset + j] *= prevValues[idx]; } } idxOffset *= prevValues.length; } ret = new DenseVector(values); } return Row.join(value, Row.of(ret)); } } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); } public static Interaction load(StreamTableEnvironment env, String path) throws IOException { return ReadWriteUtils.loadStageParam(path); } @Override public Map, Object> getParamMap() { return paramMap; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy