All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerModel Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.kbinsdiscretizer;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

/**
 * A Model which transforms continuous features into discrete features using the model data computed
 * by {@link KBinsDiscretizer}.
 *
 * 

A feature value `v` should be mapped to a bin with edges as `{left, right}` if `v` is in * `[left, right)`. If `v` does not fall into any of the bins, it is mapped to the closest bin. For * example suppose the bin edges are `{-1, 0, 1}` for one column, then we have two bins `{-1, 0}` * and `{0, 1}`. In this case, -2 is mapped into 0-th bin, 0 is mapped into the 1-st bin and 2 is * mapped into the 1-st bin. */ public class KBinsDiscretizerModel implements Model, KBinsDiscretizerModelParams { private final Map, Object> paramMap = new HashMap<>(); private Table modelDataTable; public KBinsDiscretizerModel() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public Table[] transform(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); DataStream inputData = tEnv.toDataStream(inputs[0]); DataStream modelData = KBinsDiscretizerModelData.getModelDataStream(modelDataTable); final String broadcastModelKey = "broadcastModelKey"; RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); RowTypeInfo outputTypeInfo = new RowTypeInfo( ArrayUtils.addAll( inputTypeInfo.getFieldTypes(), TypeInformation.of(DenseVector.class)), ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCol())); DataStream output = BroadcastUtils.withBroadcastStream( Collections.singletonList(inputData), Collections.singletonMap(broadcastModelKey, modelData), inputList -> { DataStream input = inputList.get(0); return input.map( new FindBinFunction(getInputCol(), broadcastModelKey), outputTypeInfo); }); return new Table[] {tEnv.fromDataStream(output)}; } @Override public KBinsDiscretizerModel setModelData(Table... inputs) { modelDataTable = inputs[0]; return this; } @Override public Table[] getModelData() { return new Table[] {modelDataTable}; } @Override public Map, Object> getParamMap() { return paramMap; } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); ReadWriteUtils.saveModelData( KBinsDiscretizerModelData.getModelDataStream(modelDataTable), path, new KBinsDiscretizerModelData.ModelDataEncoder()); } public static KBinsDiscretizerModel load(StreamTableEnvironment tEnv, String path) throws IOException { KBinsDiscretizerModel model = ReadWriteUtils.loadStageParam(path); Table modelDataTable = ReadWriteUtils.loadModelData( tEnv, path, new KBinsDiscretizerModelData.ModelDataDecoder()); return model.setModelData(modelDataTable); } private static class FindBinFunction extends RichMapFunction { private final String inputCol; private final String broadcastKey; /** Model data used to find bins for each feature. */ private double[][] binEdges; public FindBinFunction(String inputCol, String broadcastKey) { this.inputCol = inputCol; this.broadcastKey = broadcastKey; } @Override public Row map(Row row) { if (binEdges == null) { KBinsDiscretizerModelData modelData = (KBinsDiscretizerModelData) getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); binEdges = modelData.binEdges; } DenseVector inputVec = ((Vector) row.getField(inputCol)).toDense(); DenseVector outputVec = inputVec.clone(); for (int i = 0; i < inputVec.size(); i++) { double targetFeature = inputVec.get(i); int index = Arrays.binarySearch(binEdges[i], targetFeature); if (index < 0) { // Computes the index to insert. index = -index - 1; // Puts it in the left bin. index--; } // Handles the boundary. index = Math.min(index, (binEdges[i].length - 2)); index = Math.max(index, 0); outputVec.set(i, index); } return Row.join(row, Row.of(outputVec)); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy