All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.kbinsdiscretizer.KBinsDiscretizerParams Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.kbinsdiscretizer;

import org.apache.flink.ml.param.IntParam;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.param.ParamValidators;
import org.apache.flink.ml.param.StringParam;

/**
 * Params for {@link KBinsDiscretizer}.
 *
 * @param  The class type of this instance.
 */
public interface KBinsDiscretizerParams extends KBinsDiscretizerModelParams {
    String UNIFORM = "uniform";
    String QUANTILE = "quantile";
    String KMEANS = "kmeans";

    /**
     * Supported options to define the widths of the bins are listed as follows.
     *
     * 
    *
  • uniform: all bins in each feature have identical widths. *
  • quantile: all bins in each feature have the same number of points. *
  • kmeans: values in each bin have the same nearest center of a 1D kmeans cluster. *
*/ Param STRATEGY = new StringParam( "strategy", "Strategy used to define the width of the bin.", QUANTILE, ParamValidators.inArray(UNIFORM, QUANTILE, KMEANS)); Param NUM_BINS = new IntParam("numBins", "Number of bins to produce.", 5, ParamValidators.gtEq(2)); Param SUB_SAMPLES = new IntParam( "subSamples", "Maximum number of samples used to fit the model.", 200000, ParamValidators.gtEq(2)); default String getStrategy() { return get(STRATEGY); } default T setStrategy(String value) { return set(STRATEGY, value); } default int getNumBins() { return get(NUM_BINS); } default T setNumBins(int value) { return set(NUM_BINS, value); } default int getSubSamples() { return get(SUB_SAMPLES); } default T setSubSamples(Integer value) { return set(SUB_SAMPLES, value); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy