org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.feature.minmaxscaler;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;
import org.apache.commons.lang3.ArrayUtils;
import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/** A Model which transforms data using the model data computed by {@link MinMaxScaler}. */
public class MinMaxScalerModel
implements Model, MinMaxScalerParams {
private final Map, Object> paramMap = new HashMap<>();
private Table modelDataTable;
public MinMaxScalerModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
public MinMaxScalerModel setModelData(Table... inputs) {
modelDataTable = inputs[0];
return this;
}
@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}
@Override
@SuppressWarnings("unchecked")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream data = tEnv.toDataStream(inputs[0]);
DataStream minMaxScalerModel =
MinMaxScalerModelData.getModelDataStream(modelDataTable);
final String broadcastModelKey = "broadcastModelKey";
RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(
inputTypeInfo.getFieldTypes(),
TypeInformation.of(DenseVector.class)),
ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCol()));
DataStream output =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(data),
Collections.singletonMap(broadcastModelKey, minMaxScalerModel),
inputList -> {
DataStream input = inputList.get(0);
return input.map(
new PredictOutputFunction(
broadcastModelKey, getMax(), getMin(), getInputCol()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(output)};
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
ReadWriteUtils.saveModelData(
MinMaxScalerModelData.getModelDataStream(modelDataTable),
path,
new MinMaxScalerModelData.ModelDataEncoder());
}
/**
* Loads model data from path.
*
* @param tEnv Stream table environment.
* @param path Model path.
* @return MinMaxScalerModel model.
*/
public static MinMaxScalerModel load(StreamTableEnvironment tEnv, String path)
throws IOException {
MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path);
Table modelDataTable =
ReadWriteUtils.loadModelData(
tEnv, path, new MinMaxScalerModelData.ModelDataDecoder());
return model.setModelData(modelDataTable);
}
/** This operator loads model data and predicts result. */
private static class PredictOutputFunction extends RichMapFunction {
private final String inputCol;
private final String broadcastKey;
private final double upperBound;
private final double lowerBound;
private DenseVector scaleVector;
private DenseVector offsetVector;
public PredictOutputFunction(
String broadcastKey, double upperBound, double lowerBound, String inputCol) {
this.upperBound = upperBound;
this.lowerBound = lowerBound;
this.broadcastKey = broadcastKey;
this.inputCol = inputCol;
}
@Override
public Row map(Row row) {
if (scaleVector == null) {
MinMaxScalerModelData minMaxScalerModelData =
(MinMaxScalerModelData)
getRuntimeContext().getBroadcastVariable(broadcastKey).get(0);
DenseVector minVector = minMaxScalerModelData.minVector;
DenseVector maxVector = minMaxScalerModelData.maxVector;
scaleVector = new DenseVector(minVector.size());
offsetVector = new DenseVector(minVector.size());
for (int i = 0; i < maxVector.size(); ++i) {
if (Math.abs(minVector.values[i] - maxVector.values[i]) < 1.0e-5) {
scaleVector.values[i] = 0.0;
offsetVector.values[i] = (upperBound + lowerBound) / 2;
} else {
scaleVector.values[i] =
(upperBound - lowerBound)
/ (maxVector.values[i] - minVector.values[i]);
offsetVector.values[i] =
lowerBound - minVector.values[i] * scaleVector.values[i];
}
}
}
DenseVector inputVec = ((Vector) row.getField(inputCol)).toDense();
DenseVector outputVec = new DenseVector(scaleVector.size());
for (int i = 0; i < scaleVector.size(); ++i) {
outputVec.values[i] =
inputVec.values[i] * scaleVector.values[i] + offsetVector.values[i];
}
return Row.join(row, Row.of(outputVec));
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy