All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.onehotencoder;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.common.param.HasHandleInvalid;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.SparseVectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.function.Function;

/**
 * A Model which encodes data into one-hot format using the model data computed by {@link
 * OneHotEncoder}.
 *
 * 

The `keep` and `skip` option of {@link HasHandleInvalid} is not supported in {@link * OneHotEncoderParams}. */ public class OneHotEncoderModel implements Model, OneHotEncoderParams { private final Map, Object> paramMap = new HashMap<>(); private Table modelDataTable; public OneHotEncoderModel() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public Table[] transform(Table... inputs) { final String[] inputCols = getInputCols(); final String[] outputCols = getOutputCols(); final boolean dropLast = getDropLast(); final String broadcastModelKey = "OneHotModelStream"; Preconditions.checkArgument(getHandleInvalid().equals(ERROR_INVALID)); Preconditions.checkArgument(inputs.length == 1); Preconditions.checkArgument(inputCols.length == outputCols.length); RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); RowTypeInfo outputTypeInfo = new RowTypeInfo( ArrayUtils.addAll( inputTypeInfo.getFieldTypes(), Collections.nCopies( outputCols.length, SparseVectorTypeInfo.INSTANCE) .toArray(new TypeInformation[0])), ArrayUtils.addAll(inputTypeInfo.getFieldNames(), outputCols)); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) modelDataTable).getTableEnvironment(); DataStream input = tEnv.toDataStream(inputs[0]); DataStream> modelStream = OneHotEncoderModelData.getModelDataStream(modelDataTable); Function>, DataStream> function = dataStreams -> { DataStream stream = dataStreams.get(0); return stream.map( new GenerateOutputsFunction(inputCols, dropLast, broadcastModelKey), outputTypeInfo); }; DataStream output = BroadcastUtils.withBroadcastStream( Collections.singletonList(input), Collections.singletonMap(broadcastModelKey, modelStream), function); Table outputTable = tEnv.fromDataStream(output); return new Table[] {outputTable}; } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); ReadWriteUtils.saveModelData( OneHotEncoderModelData.getModelDataStream(modelDataTable), path, new OneHotEncoderModelData.ModelDataEncoder()); } public static OneHotEncoderModel load(StreamTableEnvironment tEnv, String path) throws IOException { OneHotEncoderModel model = ReadWriteUtils.loadStageParam(path); Table modelDataTable = ReadWriteUtils.loadModelData( tEnv, path, new OneHotEncoderModelData.ModelDataStreamFormat()); return model.setModelData(modelDataTable); } @Override public Map, Object> getParamMap() { return paramMap; } @Override public OneHotEncoderModel setModelData(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); modelDataTable = inputs[0]; return this; } @Override public Table[] getModelData() { return new Table[] {modelDataTable}; } private static class GenerateOutputsFunction extends RichMapFunction { private final String[] inputCols; private final boolean dropLast; private final String broadcastModelKey; private List> model = null; public GenerateOutputsFunction( String[] inputCols, boolean dropLast, String broadcastModelKey) { this.inputCols = inputCols; this.dropLast = dropLast; this.broadcastModelKey = broadcastModelKey; } @Override public Row map(Row row) { if (model == null) { model = getRuntimeContext().getBroadcastVariable(broadcastModelKey); } int[] categorySizes = new int[model.size()]; int offset = dropLast ? 0 : 1; for (Tuple2 tup : model) { categorySizes[tup.f0] = tup.f1 + offset; } Row result = new Row(categorySizes.length); for (int i = 0; i < categorySizes.length; i++) { Number number = (Number) row.getField(inputCols[i]); Preconditions.checkArgument( number.intValue() == number.doubleValue(), String.format("Value %s cannot be parsed as indexed integer.", number)); int idx = number.intValue(); if (idx == categorySizes[i]) { result.setField(i, Vectors.sparse(categorySizes[i], new int[0], new double[0])); } else { result.setField( i, Vectors.sparse(categorySizes[i], new int[] {idx}, new double[] {1.0})); } } return Row.join(row, result); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy