All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.robustscaler.RobustScaler Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.robustscaler;

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.ml.api.Estimator;
import org.apache.flink.ml.common.datastream.DataStreamUtils;
import org.apache.flink.ml.common.util.QuantileSummary;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.stream.Collectors;

/**
 * An Estimator which scales features using statistics that are robust to outliers.
 *
 * 

This Scaler removes the median and scales the data according to the quantile range (defaults * to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and * the 3rd quartile (75th quantile) but can be configured. * *

Centering and scaling happen independently on each feature by computing the relevant * statistics on the samples in the training set. Median and quantile range are then stored to be * used on later data using the transform method. * *

Standardization of a dataset is a common requirement for many machine learning estimators. * Typically this is done by removing the mean and scaling to unit variance. However, outliers can * often influence the sample mean / variance in a negative way. In such cases, the median and the * interquartile range often give better results. * *

Note that NaN values are ignored in the computation of medians and ranges. */ public class RobustScaler implements Estimator, RobustScalerParams { private final Map, Object> paramMap = new HashMap<>(); public RobustScaler() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public RobustScalerModel fit(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); final String inputCol = getInputCol(); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); DataStream inputData = tEnv.toDataStream(inputs[0]) .map( (MapFunction) value -> ((Vector) value.getField(inputCol)).toDense()); DataStream modelData = DataStreamUtils.aggregate( inputData, new QuantileAggregator(getRelativeError(), getLower(), getUpper())); RobustScalerModel model = new RobustScalerModel().setModelData(tEnv.fromDataStream(modelData)); ParamUtils.updateExistingParams(model, getParamMap()); return model; } /** * Computes the medians and quantile ranges of input column and builds the {@link * RobustScalerModelData}. */ private static class QuantileAggregator implements AggregateFunction { private final double relativeError; private final double lower; private final double upper; public QuantileAggregator(double relativeError, double lower, double upper) { this.relativeError = relativeError; this.lower = lower; this.upper = upper; } @Override public QuantileSummary[] createAccumulator() { return new QuantileSummary[0]; } @Override public QuantileSummary[] add(DenseVector denseVector, QuantileSummary[] quantileSummaries) { if (quantileSummaries.length == 0) { quantileSummaries = new QuantileSummary[denseVector.size()]; for (int i = 0; i < denseVector.size(); i++) { quantileSummaries[i] = new QuantileSummary(relativeError); } } Preconditions.checkState( denseVector.size() == quantileSummaries.length, "Number of features must be %s but got %s.", quantileSummaries.length, denseVector.size()); for (int i = 0; i < quantileSummaries.length; i++) { double value = denseVector.get(i); if (!Double.isNaN(value)) { quantileSummaries[i] = quantileSummaries[i].insert(value); } } return quantileSummaries; } @Override public RobustScalerModelData getResult(QuantileSummary[] quantileSummaries) { Preconditions.checkState(quantileSummaries.length != 0, "The training set is empty."); DenseVector medianVector = new DenseVector(quantileSummaries.length); DenseVector rangeVector = new DenseVector(quantileSummaries.length); for (int i = 0; i < quantileSummaries.length; i++) { QuantileSummary compressed = quantileSummaries[i].compress(); double[] quantiles = compressed.query(new double[] {0.5, lower, upper}); medianVector.values[i] = quantiles[0]; rangeVector.values[i] = quantiles[2] - quantiles[1]; } return new RobustScalerModelData(medianVector, rangeVector); } @Override public QuantileSummary[] merge(QuantileSummary[] summaries, QuantileSummary[] acc) { if (summaries.length == 0) { return Arrays.stream(acc) .map(QuantileSummary::compress) .collect(Collectors.toList()) .toArray(acc); } if (acc.length == 0) { return Arrays.stream(summaries) .map(QuantileSummary::compress) .collect(Collectors.toList()) .toArray(summaries); } Preconditions.checkState(summaries.length == acc.length); for (int i = 0; i < summaries.length; i++) { acc[i] = acc[i].compress().merge(summaries[i].compress()); } return acc; } } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); } public static RobustScaler load(StreamTableEnvironment tEnv, String path) throws IOException { return ReadWriteUtils.loadStageParam(path); } @Override public Map, Object> getParamMap() { return paramMap; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy