All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.standardscaler;

import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.iteration.operator.OperatorStateUtils;
import org.apache.flink.ml.api.Estimator;
import org.apache.flink.ml.common.datastream.DataStreamUtils;
import org.apache.flink.ml.common.window.EventTimeSessionWindows;
import org.apache.flink.ml.common.window.EventTimeTumblingWindows;
import org.apache.flink.ml.common.window.Windows;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.DenseVectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.functions.windowing.ProcessAllWindowFunction;
import org.apache.flink.streaming.api.windowing.windows.Window;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.apache.flink.util.Preconditions;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;

/**
 * An Estimator which implements the online standard scaling algorithm, which is the online version
 * of {@link StandardScaler}.
 *
 * 

OnlineStandardScaler splits the input data by the user-specified window strategy (i.e., {@link * org.apache.flink.ml.common.param.HasWindows}). For each window, it computes the mean and standard * deviation using the data seen so far (i.e., not only the data in the current window, but also the * history data). The model data generated by OnlineStandardScaler is a model stream. There is one * model data for each window. * *

During the inference phase (i.e., using {@link OnlineStandardScalerModel} for prediction), * users could output the model version that is used for predicting each data point. Moreover, * *

    *
  • When the train data and test data both contain event time, users could specify the maximum * difference between the timestamps of the input and model data ({@link * org.apache.flink.ml.common.param.HasMaxAllowedModelDelayMs}), which enforces to use a * relatively fresh model for prediction. *
  • Otherwise, the prediction process always uses the current model data for prediction. *
*/ public class OnlineStandardScaler implements Estimator, OnlineStandardScalerParams { private final Map, Object> paramMap = new HashMap<>(); public OnlineStandardScaler() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public OnlineStandardScalerModel fit(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); Windows windows = getWindows(); boolean isEventTimeBasedTraining = false; if (windows instanceof EventTimeTumblingWindows || windows instanceof EventTimeSessionWindows) { isEventTimeBasedTraining = true; } DataStream modelData = DataStreamUtils.windowAllAndProcess( tEnv.toDataStream(inputs[0]), windows, new ComputeModelDataFunction<>(getInputCol(), isEventTimeBasedTraining)); OnlineStandardScalerModel model = new OnlineStandardScalerModel().setModelData(tEnv.fromDataStream(modelData)); ParamUtils.updateExistingParams(model, paramMap); return model; } private static class ComputeModelDataFunction extends ProcessAllWindowFunction { private final String inputCol; private final boolean isEventTimeBasedTraining; public ComputeModelDataFunction(String inputCol, boolean isEventTimeBasedTraining) { this.inputCol = inputCol; this.isEventTimeBasedTraining = isEventTimeBasedTraining; } @Override public void process( ProcessAllWindowFunction.Context context, Iterable iterable, Collector collector) throws Exception { ListState sumState = context.globalState() .getListState( new ListStateDescriptor<>( "sumState", DenseVectorTypeInfo.INSTANCE)); ListState squaredSumState = context.globalState() .getListState( new ListStateDescriptor<>( "squaredSumState", DenseVectorTypeInfo.INSTANCE)); ListState numElementsState = context.globalState() .getListState( new ListStateDescriptor<>("numElementsState", Types.LONG)); ListState modelVersionState = context.globalState() .getListState( new ListStateDescriptor<>("modelVersionState", Types.LONG)); DenseVector sum = OperatorStateUtils.getUniqueElement(sumState, "sumState").orElse(null); DenseVector squaredSum = OperatorStateUtils.getUniqueElement(squaredSumState, "squaredSumState") .orElse(null); long numElements = OperatorStateUtils.getUniqueElement(numElementsState, "numElementsState") .orElse(0L); long modelVersion = OperatorStateUtils.getUniqueElement(modelVersionState, "modelVersionState") .orElse(0L); long numElementsBefore = numElements; for (Row element : iterable) { Vector inputVec = ((Vector) Objects.requireNonNull(element.getField(inputCol))).clone(); if (numElements == 0) { sum = new DenseVector(inputVec.size()); squaredSum = new DenseVector(inputVec.size()); } BLAS.axpy(1, inputVec, sum); BLAS.hDot(inputVec, inputVec); BLAS.axpy(1, inputVec, squaredSum); numElements++; } if (numElements - numElementsBefore > 0) { long currentEventTime = isEventTimeBasedTraining ? context.window().maxTimestamp() : Long.MAX_VALUE; collector.collect( buildModelData( numElements, sum.clone(), squaredSum.clone(), modelVersion, currentEventTime)); sumState.update(Collections.singletonList(sum)); squaredSumState.update(Collections.singletonList(squaredSum)); numElementsState.update(Collections.singletonList(numElements)); modelVersion++; modelVersionState.update(Collections.singletonList(modelVersion)); } } } private static StandardScalerModelData buildModelData( long numElements, DenseVector sum, DenseVector squaredSum, long modelVersion, long currentTimeStamp) { BLAS.scal(1.0 / numElements, sum); double[] mean = sum.values; double[] std = squaredSum.values; if (numElements > 1) { for (int i = 0; i < mean.length; i++) { std[i] = Math.sqrt( (squaredSum.values[i] - numElements * mean[i] * mean[i]) / (numElements - 1)); } } else { Arrays.fill(std, 0.0); } return new StandardScalerModelData( Vectors.dense(mean), Vectors.dense(std), modelVersion, currentTimeStamp); } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); } @Override public Map, Object> getParamMap() { return paramMap; } public static OnlineStandardScaler load(StreamTableEnvironment tEnv, String path) throws IOException { return ReadWriteUtils.loadStageParam(path); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy