
org.apache.flink.ml.feature.standardscaler.OnlineStandardScaler Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.feature.standardscaler;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.iteration.operator.OperatorStateUtils;
import org.apache.flink.ml.api.Estimator;
import org.apache.flink.ml.common.datastream.DataStreamUtils;
import org.apache.flink.ml.common.window.EventTimeSessionWindows;
import org.apache.flink.ml.common.window.EventTimeTumblingWindows;
import org.apache.flink.ml.common.window.Windows;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.DenseVectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.functions.windowing.ProcessAllWindowFunction;
import org.apache.flink.streaming.api.windowing.windows.Window;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.apache.flink.util.Preconditions;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;
/**
* An Estimator which implements the online standard scaling algorithm, which is the online version
* of {@link StandardScaler}.
*
* OnlineStandardScaler splits the input data by the user-specified window strategy (i.e., {@link
* org.apache.flink.ml.common.param.HasWindows}). For each window, it computes the mean and standard
* deviation using the data seen so far (i.e., not only the data in the current window, but also the
* history data). The model data generated by OnlineStandardScaler is a model stream. There is one
* model data for each window.
*
*
During the inference phase (i.e., using {@link OnlineStandardScalerModel} for prediction),
* users could output the model version that is used for predicting each data point. Moreover,
*
*
* - When the train data and test data both contain event time, users could specify the maximum
* difference between the timestamps of the input and model data ({@link
* org.apache.flink.ml.common.param.HasMaxAllowedModelDelayMs}), which enforces to use a
* relatively fresh model for prediction.
*
- Otherwise, the prediction process always uses the current model data for prediction.
*
*/
public class OnlineStandardScaler
implements Estimator,
OnlineStandardScalerParams {
private final Map, Object> paramMap = new HashMap<>();
public OnlineStandardScaler() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
public OnlineStandardScalerModel fit(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
Windows windows = getWindows();
boolean isEventTimeBasedTraining = false;
if (windows instanceof EventTimeTumblingWindows
|| windows instanceof EventTimeSessionWindows) {
isEventTimeBasedTraining = true;
}
DataStream modelData =
DataStreamUtils.windowAllAndProcess(
tEnv.toDataStream(inputs[0]),
windows,
new ComputeModelDataFunction<>(getInputCol(), isEventTimeBasedTraining));
OnlineStandardScalerModel model =
new OnlineStandardScalerModel().setModelData(tEnv.fromDataStream(modelData));
ParamUtils.updateExistingParams(model, paramMap);
return model;
}
private static class ComputeModelDataFunction
extends ProcessAllWindowFunction {
private final String inputCol;
private final boolean isEventTimeBasedTraining;
public ComputeModelDataFunction(String inputCol, boolean isEventTimeBasedTraining) {
this.inputCol = inputCol;
this.isEventTimeBasedTraining = isEventTimeBasedTraining;
}
@Override
public void process(
ProcessAllWindowFunction.Context context,
Iterable iterable,
Collector collector)
throws Exception {
ListState sumState =
context.globalState()
.getListState(
new ListStateDescriptor<>(
"sumState", DenseVectorTypeInfo.INSTANCE));
ListState squaredSumState =
context.globalState()
.getListState(
new ListStateDescriptor<>(
"squaredSumState", DenseVectorTypeInfo.INSTANCE));
ListState numElementsState =
context.globalState()
.getListState(
new ListStateDescriptor<>("numElementsState", Types.LONG));
ListState modelVersionState =
context.globalState()
.getListState(
new ListStateDescriptor<>("modelVersionState", Types.LONG));
DenseVector sum =
OperatorStateUtils.getUniqueElement(sumState, "sumState").orElse(null);
DenseVector squaredSum =
OperatorStateUtils.getUniqueElement(squaredSumState, "squaredSumState")
.orElse(null);
long numElements =
OperatorStateUtils.getUniqueElement(numElementsState, "numElementsState")
.orElse(0L);
long modelVersion =
OperatorStateUtils.getUniqueElement(modelVersionState, "modelVersionState")
.orElse(0L);
long numElementsBefore = numElements;
for (Row element : iterable) {
Vector inputVec =
((Vector) Objects.requireNonNull(element.getField(inputCol))).clone();
if (numElements == 0) {
sum = new DenseVector(inputVec.size());
squaredSum = new DenseVector(inputVec.size());
}
BLAS.axpy(1, inputVec, sum);
BLAS.hDot(inputVec, inputVec);
BLAS.axpy(1, inputVec, squaredSum);
numElements++;
}
if (numElements - numElementsBefore > 0) {
long currentEventTime =
isEventTimeBasedTraining ? context.window().maxTimestamp() : Long.MAX_VALUE;
collector.collect(
buildModelData(
numElements,
sum.clone(),
squaredSum.clone(),
modelVersion,
currentEventTime));
sumState.update(Collections.singletonList(sum));
squaredSumState.update(Collections.singletonList(squaredSum));
numElementsState.update(Collections.singletonList(numElements));
modelVersion++;
modelVersionState.update(Collections.singletonList(modelVersion));
}
}
}
private static StandardScalerModelData buildModelData(
long numElements,
DenseVector sum,
DenseVector squaredSum,
long modelVersion,
long currentTimeStamp) {
BLAS.scal(1.0 / numElements, sum);
double[] mean = sum.values;
double[] std = squaredSum.values;
if (numElements > 1) {
for (int i = 0; i < mean.length; i++) {
std[i] =
Math.sqrt(
(squaredSum.values[i] - numElements * mean[i] * mean[i])
/ (numElements - 1));
}
} else {
Arrays.fill(std, 0.0);
}
return new StandardScalerModelData(
Vectors.dense(mean), Vectors.dense(std), modelVersion, currentTimeStamp);
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
public static OnlineStandardScaler load(StreamTableEnvironment tEnv, String path)
throws IOException {
return ReadWriteUtils.loadStageParam(path);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy