org.apache.flink.ml.feature.standardscaler.StandardScalerModel Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.feature.standardscaler;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.typeinfo.VectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;
import org.apache.commons.lang3.ArrayUtils;
import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/** A Model which transforms data using the model data computed by {@link StandardScaler}. */
public class StandardScalerModel
implements Model, StandardScalerParams {
private final Map, Object> paramMap = new HashMap<>();
private Table modelDataTable;
public StandardScalerModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}
@Override
@SuppressWarnings("unchecked, rawtypes")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream inputStream = tEnv.toDataStream(inputs[0]);
RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), VectorTypeInfo.INSTANCE),
ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCol()));
final String broadcastModelKey = "broadcastModelKey";
DataStream modelDataStream =
StandardScalerModelData.getModelDataStream(modelDataTable);
DataStream predictionResult =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(inputStream),
Collections.singletonMap(broadcastModelKey, modelDataStream),
inputList -> {
DataStream inputData = inputList.get(0);
return inputData.map(
new PredictOutputFunction(
broadcastModelKey,
getInputCol(),
getWithMean(),
getWithStd()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(predictionResult)};
}
/** A utility function used for prediction. */
private static class PredictOutputFunction extends RichMapFunction {
private final String broadcastModelKey;
private final String inputCol;
private final boolean withMean;
private final boolean withStd;
private DenseVector mean;
private DenseVector scale;
public PredictOutputFunction(
String broadcastModelKey, String inputCol, boolean withMean, boolean withStd) {
this.broadcastModelKey = broadcastModelKey;
this.inputCol = inputCol;
this.withMean = withMean;
this.withStd = withStd;
}
@Override
public Row map(Row dataPoint) {
if (mean == null) {
StandardScalerModelData modelData =
(StandardScalerModelData)
getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0);
mean = modelData.mean;
DenseVector std = modelData.std;
if (withStd) {
scale = std;
double[] scaleValues = scale.values;
for (int i = 0; i < scaleValues.length; i++) {
scaleValues[i] = scaleValues[i] == 0 ? 0 : 1 / scaleValues[i];
}
}
}
Vector outputVec = ((Vector) (dataPoint.getField(inputCol))).clone();
if (withMean) {
outputVec = outputVec.toDense();
BLAS.axpy(-1, mean, (DenseVector) outputVec);
}
if (withStd) {
BLAS.hDot(scale, outputVec);
}
return Row.join(dataPoint, Row.of(outputVec));
}
}
@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
ReadWriteUtils.saveModelData(
StandardScalerModelData.getModelDataStream(modelDataTable),
path,
new StandardScalerModelData.ModelDataEncoder());
}
public static StandardScalerModel load(StreamTableEnvironment tEnv, String path)
throws IOException {
StandardScalerModel model = ReadWriteUtils.loadStageParam(path);
Table modelDataTable =
ReadWriteUtils.loadModelData(
tEnv, path, new StandardScalerModelData.ModelDataDecoder());
return model.setModelData(modelDataTable);
}
@Override
public Map, Object> getParamMap() {
return paramMap;
}
@Override
public StandardScalerModel setModelData(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
modelDataTable = inputs[0];
return this;
}
@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy