All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.ml.feature.stringindexer.StringIndexerModel Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.ml.feature.stringindexer;

import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.common.param.HasHandleInvalid;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

/**
 * A Model which transforms input string/numeric column(s) to double column(s) using the model data
 * computed by {@link StringIndexer}.
 *
 * 

The `keep` option of {@link HasHandleInvalid} means that we transform the invalid input into a * special index, whose value is the number of distinct values in this column. */ public class StringIndexerModel implements Model, StringIndexerModelParams { private final Map, Object> paramMap = new HashMap<>(); private Table modelDataTable; public StringIndexerModel() { ParamUtils.initializeMapWithDefaultValues(paramMap, this); } @Override public void save(String path) throws IOException { ReadWriteUtils.saveMetadata(this, path); ReadWriteUtils.saveModelData( StringIndexerModelData.getModelDataStream(modelDataTable), path, new StringIndexerModelData.ModelDataEncoder()); } public static StringIndexerModel load(StreamTableEnvironment tEnv, String path) throws IOException { StringIndexerModel model = ReadWriteUtils.loadStageParam(path); Table modelDataTable = ReadWriteUtils.loadModelData( tEnv, path, new StringIndexerModelData.ModelDataDecoder()); return model.setModelData(modelDataTable); } @Override public Map, Object> getParamMap() { return paramMap; } @Override public StringIndexerModel setModelData(Table... inputs) { modelDataTable = inputs[0]; return this; } @Override public Table[] getModelData() { return new Table[] {modelDataTable}; } @Override @SuppressWarnings("unchecked, rawtypes") public Table[] transform(Table... inputs) { Preconditions.checkArgument(inputs.length == 1); String[] inputCols = getInputCols(); String[] outputCols = getOutputCols(); Preconditions.checkArgument(inputCols.length == outputCols.length); StreamTableEnvironment tEnv = (StreamTableEnvironment) ((TableImpl) modelDataTable).getTableEnvironment(); RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); TypeInformation[] outputTypes = new TypeInformation[outputCols.length]; Arrays.fill(outputTypes, BasicTypeInfo.DOUBLE_TYPE_INFO); RowTypeInfo outputTypeInfo = new RowTypeInfo( ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), outputTypes), ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getOutputCols())); final String broadcastModelKey = "broadcastModelKey"; DataStream modelDataStream = StringIndexerModelData.getModelDataStream(modelDataTable); DataStream result = BroadcastUtils.withBroadcastStream( Collections.singletonList(tEnv.toDataStream(inputs[0])), Collections.singletonMap(broadcastModelKey, modelDataStream), inputList -> { DataStream inputData = inputList.get(0); return inputData.flatMap( new String2Index( broadcastModelKey, inputCols, getHandleInvalid()), outputTypeInfo); }); return new Table[] {tEnv.fromDataStream(result)}; } /** Maps the input columns to double values according to the model data. */ private static class String2Index extends RichFlatMapFunction { private HashMap[] modelDataMap; private final String broadcastModelKey; private final String[] inputCols; private final String handleInValid; public String2Index(String broadcastModelKey, String[] inputCols, String handleInValid) { this.broadcastModelKey = broadcastModelKey; this.inputCols = inputCols; this.handleInValid = handleInValid; } @Override @SuppressWarnings("unchecked") public void flatMap(Row input, Collector out) { if (modelDataMap == null) { modelDataMap = new HashMap[inputCols.length]; StringIndexerModelData modelData = (StringIndexerModelData) getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0); String[][] stringsArray = modelData.stringArrays; for (int i = 0; i < stringsArray.length; i++) { double idx = 0.0; modelDataMap[i] = new HashMap<>(stringsArray[i].length); for (String string : stringsArray[i]) { modelDataMap[i].put(string, idx++); } } } Row outputIndices = new Row(inputCols.length); for (int i = 0; i < inputCols.length; i++) { Object objVal = input.getField(inputCols[i]); String stringVal; if (null == objVal) { stringVal = null; } else if (objVal instanceof String) { stringVal = (String) objVal; } else if (objVal instanceof Number) { stringVal = String.valueOf(objVal); } else { throw new RuntimeException( "The input column only supports string and numeric type."); } if (modelDataMap[i].containsKey(stringVal)) { outputIndices.setField(i, modelDataMap[i].get(stringVal)); } else { switch (handleInValid) { case SKIP_INVALID: return; case ERROR_INVALID: throw new RuntimeException( "The input contains unseen string: " + stringVal + ". See " + HANDLE_INVALID + " parameter for more options."); case KEEP_INVALID: outputIndices.setField(i, (double) modelDataMap[i].size()); break; default: throw new UnsupportedOperationException( "Unsupported " + HANDLE_INVALID + "type: " + handleInValid); } } } out.collect(Row.join(input, outputIndices)); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy