org.apache.flink.ml.preprocessing.MinMaxScaler.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.preprocessing
import breeze.linalg
import breeze.linalg.{max, min}
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.api.scala._
import org.apache.flink.ml._
import org.apache.flink.ml.common.{LabeledVector, Parameter, ParameterMap}
import org.apache.flink.ml.math.Breeze._
import org.apache.flink.ml.math.{BreezeVectorConverter, Vector}
import org.apache.flink.ml.pipeline.{TransformDataSetOperation, FitOperation,
Transformer}
import org.apache.flink.ml.preprocessing.MinMaxScaler.{Max, Min}
import scala.reflect.ClassTag
/** Scales observations, so that all features are in a user-specified range.
* By default for [[MinMaxScaler]] transformer range = [0,1].
*
* This transformer takes a subtype of [[Vector]] of values and maps it to a
* scaled subtype of [[Vector]] such that each feature lies between a user-specified range.
*
* This transformer can be prepended to all [[Transformer]] and
* [[org.apache.flink.ml.pipeline.Predictor]] implementations which expect as input a subtype
* of [[Vector]] or a [[LabeledVector]].
*
* @example
* {{{
* val trainingDS: DataSet[Vector] = env.fromCollection(data)
* val transformer = MinMaxScaler().setMin(-1.0)
*
* transformer.fit(trainingDS)
* val transformedDS = transformer.transform(trainingDS)
* }}}
*
* =Parameters=
*
* - [[Min]]: The minimum value of the range of the transformed data set; by default equal to 0
* - [[Max]]: The maximum value of the range of the transformed data set; by default
* equal to 1
*/
class MinMaxScaler extends Transformer[MinMaxScaler] {
private [preprocessing] var metricsOption: Option[
DataSet[(linalg.Vector[Double], linalg.Vector[Double])]
] = None
/** Sets the minimum for the range of the transformed data
*
* @param min the user-specified minimum value.
* @return the MinMaxScaler instance with its minimum value set to the user-specified value.
*/
def setMin(min: Double): MinMaxScaler = {
parameters.add(Min, min)
this
}
/** Sets the maximum for the range of the transformed data
*
* @param max the user-specified maximum value.
* @return the MinMaxScaler instance with its minimum value set to the user-specified value.
*/
def setMax(max: Double): MinMaxScaler = {
parameters.add(Max, max)
this
}
}
object MinMaxScaler {
// ====================================== Parameters =============================================
case object Min extends Parameter[Double] {
override val defaultValue: Option[Double] = Some(0.0)
}
case object Max extends Parameter[Double] {
override val defaultValue: Option[Double] = Some(1.0)
}
// ==================================== Factory methods ==========================================
def apply(): MinMaxScaler = {
new MinMaxScaler()
}
// ====================================== Operations =============================================
/** Trains the [[MinMaxScaler]] by learning the minimum and maximum of each feature of the
* training data. These values are used in the transform step to transform the given input data.
*
* @tparam T Input data type which is a subtype of [[Vector]]
* @return [[FitOperation]] training the [[MinMaxScaler]] on subtypes of [[Vector]]
*/
implicit def fitVectorMinMaxScaler[T <: Vector] = new FitOperation[MinMaxScaler, T] {
override def fit(instance: MinMaxScaler, fitParameters: ParameterMap, input: DataSet[T])
: Unit = {
val metrics = extractFeatureMinMaxVectors(input)
instance.metricsOption = Some(metrics)
}
}
/** Trains the [[MinMaxScaler]] by learning the minimum and maximum of the features of the
* training data which is of type [[LabeledVector]]. The minimum and maximum are used to
* transform the given input data.
*
*/
implicit val fitLabeledVectorMinMaxScaler = {
new FitOperation[MinMaxScaler, LabeledVector] {
override def fit(
instance: MinMaxScaler,
fitParameters: ParameterMap,
input: DataSet[LabeledVector])
: Unit = {
val vectorDS = input.map(_.vector)
val metrics = extractFeatureMinMaxVectors(vectorDS)
instance.metricsOption = Some(metrics)
}
}
}
/** Calculates in one pass over the data the features' minimum and maximum values.
*
* @param dataSet The data set for which we want to calculate the minimum and maximum values.
* @return DataSet containing a single tuple of two vectors (minVector, maxVector).
* The first vector represents the minimum values vector and the second is the maximum
* values vector.
*/
private def extractFeatureMinMaxVectors[T <: Vector](dataSet: DataSet[T])
: DataSet[(linalg.Vector[Double], linalg.Vector[Double])] = {
val minMax = dataSet.map {
v => (v.asBreeze, v.asBreeze)
}.reduce {
(minMax1, minMax2) => {
val tempMinimum = min(minMax1._1, minMax2._1)
val tempMaximum = max(minMax1._2, minMax2._2)
(tempMinimum, tempMaximum)
}
}
minMax
}
/** [[TransformDataSetOperation]] which scales input data of subtype of [[Vector]] with respect to
* the calculated minimum and maximum of the training data. The minimum and maximum
* values of the resulting data is configurable.
*
* @tparam T Type of the input and output data which has to be a subtype of [[Vector]]
* @return [[TransformDataSetOperation]] scaling subtypes of [[Vector]] such that the feature
* values are in the configured range
*/
implicit def transformVectors[T <: Vector : BreezeVectorConverter : TypeInformation : ClassTag]
= {
new TransformDataSetOperation[MinMaxScaler, T, T] {
override def transformDataSet(
instance: MinMaxScaler,
transformParameters: ParameterMap,
input: DataSet[T])
: DataSet[T] = {
val resultingParameters = instance.parameters ++ transformParameters
val min = resultingParameters(Min)
val max = resultingParameters(Max)
instance.metricsOption match {
case Some(metrics) => {
input.mapWithBcVariable(metrics) {
(vector, metrics) => {
val (broadcastMin, broadcastMax) = metrics
scaleVector(vector, broadcastMin, broadcastMax, min, max)
}
}
}
case None =>
throw new RuntimeException("The MinMaxScaler has not been fitted to the data. " +
"This is necessary to estimate the minimum and maximum of the data.")
}
}
}
}
implicit val transformLabeledVectors = {
new TransformDataSetOperation[MinMaxScaler, LabeledVector, LabeledVector] {
override def transformDataSet(instance: MinMaxScaler,
transformParameters: ParameterMap,
input: DataSet[LabeledVector]): DataSet[LabeledVector] = {
val resultingParameters = instance.parameters ++ transformParameters
val min = resultingParameters(Min)
val max = resultingParameters(Max)
instance.metricsOption match {
case Some(metrics) => {
input.mapWithBcVariable(metrics) {
(labeledVector, metrics) => {
val (broadcastMin, broadcastMax) = metrics
val LabeledVector(label, vector) = labeledVector
LabeledVector(label, scaleVector(vector, broadcastMin, broadcastMax, min, max))
}
}
}
case None =>
throw new RuntimeException("The MinMaxScaler has not been fitted to the data. " +
"This is necessary to estimate the minimum and maximum of the data.")
}
}
}
}
/** Scales a vector such that it's features lie in the range [min, max]
*
* @param vector Vector to scale
* @param broadcastMin Vector containing for each feature the minimal value in the training set
* @param broadcastMax Vector containing for each feature the maximal value in the training set
* @param min Minimal value of range
* @param max Maximal value of range
* @tparam T Type of [[Vector]]
* @return Scaled feature vector
*/
private def scaleVector[T <: Vector: BreezeVectorConverter](
vector: T,
broadcastMin: linalg.Vector[Double],
broadcastMax: linalg.Vector[Double],
min: Double,
max: Double)
: T = {
var myVector = vector.asBreeze
//handle the case where a feature takes only one value
val rangePerFeature = (broadcastMax - broadcastMin)
for (i <- 0 until rangePerFeature.size) {
if (rangePerFeature(i) == 0.0) {
rangePerFeature(i)= 1.0
}
}
myVector -= broadcastMin
myVector :/= rangePerFeature
myVector = (myVector :* (max - min)) + min
myVector.fromBreeze
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy