All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.runtime.executiongraph.ExecutionVertex Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.runtime.executiongraph;

import org.apache.flink.annotation.VisibleForTesting;
import org.apache.flink.api.common.Archiveable;
import org.apache.flink.api.common.JobID;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.runtime.JobException;
import org.apache.flink.runtime.concurrent.Future;
import org.apache.flink.runtime.deployment.InputChannelDeploymentDescriptor;
import org.apache.flink.runtime.deployment.InputGateDeploymentDescriptor;
import org.apache.flink.runtime.deployment.PartialInputChannelDeploymentDescriptor;
import org.apache.flink.runtime.deployment.ResultPartitionDeploymentDescriptor;
import org.apache.flink.runtime.deployment.TaskDeploymentDescriptor;
import org.apache.flink.runtime.execution.ExecutionState;
import org.apache.flink.runtime.instance.SimpleSlot;
import org.apache.flink.runtime.instance.SlotProvider;
import org.apache.flink.runtime.io.network.partition.ResultPartitionID;
import org.apache.flink.runtime.io.network.partition.ResultPartitionType;
import org.apache.flink.runtime.jobgraph.DistributionPattern;
import org.apache.flink.runtime.jobgraph.IntermediateDataSetID;
import org.apache.flink.runtime.jobgraph.IntermediateResultPartitionID;
import org.apache.flink.runtime.jobgraph.JobEdge;
import org.apache.flink.runtime.jobgraph.JobVertexID;
import org.apache.flink.configuration.JobManagerOptions;
import org.apache.flink.runtime.jobmanager.scheduler.CoLocationConstraint;
import org.apache.flink.runtime.jobmanager.scheduler.CoLocationGroup;
import org.apache.flink.runtime.state.KeyGroupRangeAssignment;
import org.apache.flink.runtime.state.TaskStateHandles;
import org.apache.flink.runtime.taskmanager.TaskManagerLocation;
import org.apache.flink.runtime.util.EvictingBoundedList;
import org.apache.flink.util.ExceptionUtils;
import org.apache.flink.util.Preconditions;
import org.apache.flink.util.SerializedValue;

import org.slf4j.Logger;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;

import static org.apache.flink.runtime.execution.ExecutionState.FINISHED;

/**
 * The ExecutionVertex is a parallel subtask of the execution. It may be executed once, or several times, each of
 * which time it spawns an {@link Execution}.
 */
public class ExecutionVertex implements AccessExecutionVertex, Archiveable {

	private static final Logger LOG = ExecutionGraph.LOG;

	private static final int MAX_DISTINCT_LOCATIONS_TO_CONSIDER = 8;

	// --------------------------------------------------------------------------------------------

	private final ExecutionJobVertex jobVertex;

	private final Map resultPartitions;

	private final ExecutionEdge[][] inputEdges;

	private final int subTaskIndex;

	private final EvictingBoundedList priorExecutions;

	private final Time timeout;

	/** The name in the format "myTask (2/7)", cached to avoid frequent string concatenations */
	private final String taskNameWithSubtask;

	private volatile CoLocationConstraint locationConstraint;

	/** The current or latest execution attempt of this vertex's task */
	private volatile Execution currentExecution;	// this field must never be null

	// --------------------------------------------------------------------------------------------

	/**
	 * Convenience constructor for tests. Sets various fields to default values.
	 */
	@VisibleForTesting
	ExecutionVertex(
			ExecutionJobVertex jobVertex,
			int subTaskIndex,
			IntermediateResult[] producedDataSets,
			Time timeout) {

		this(
				jobVertex,
				subTaskIndex,
				producedDataSets,
				timeout,
				1L,
				System.currentTimeMillis(),
				JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE.defaultValue());
	}

	/**
	 * 
	 * @param timeout
	 *            The RPC timeout to use for deploy / cancel calls
	 * @param initialGlobalModVersion
	 *            The global modification version to initialize the first Execution with.
	 * @param createTimestamp
	 *            The timestamp for the vertex creation, used to initialize the first Execution with.
	 * @param maxPriorExecutionHistoryLength
	 *            The number of prior Executions (= execution attempts) to keep.
	 */
	public ExecutionVertex(
			ExecutionJobVertex jobVertex,
			int subTaskIndex,
			IntermediateResult[] producedDataSets,
			Time timeout,
			long initialGlobalModVersion,
			long createTimestamp,
			int maxPriorExecutionHistoryLength) {

		this.jobVertex = jobVertex;
		this.subTaskIndex = subTaskIndex;
		this.taskNameWithSubtask = String.format("%s (%d/%d)",
				jobVertex.getJobVertex().getName(), subTaskIndex + 1, jobVertex.getParallelism());

		this.resultPartitions = new LinkedHashMap<>(producedDataSets.length, 1);

		for (IntermediateResult result : producedDataSets) {
			IntermediateResultPartition irp = new IntermediateResultPartition(result, this, subTaskIndex);
			result.setPartition(subTaskIndex, irp);

			resultPartitions.put(irp.getPartitionId(), irp);
		}

		this.inputEdges = new ExecutionEdge[jobVertex.getJobVertex().getInputs().size()][];

		this.priorExecutions = new EvictingBoundedList<>(maxPriorExecutionHistoryLength);

		this.currentExecution = new Execution(
			getExecutionGraph().getFutureExecutor(),
			this,
			0,
			initialGlobalModVersion,
			createTimestamp,
			timeout);

		// create a co-location scheduling hint, if necessary
		CoLocationGroup clg = jobVertex.getCoLocationGroup();
		if (clg != null) {
			this.locationConstraint = clg.getLocationConstraint(subTaskIndex);
		}
		else {
			this.locationConstraint = null;
		}

		getExecutionGraph().registerExecution(currentExecution);

		this.timeout = timeout;
	}


	// --------------------------------------------------------------------------------------------
	//  Properties
	// --------------------------------------------------------------------------------------------

	public JobID getJobId() {
		return this.jobVertex.getJobId();
	}

	public ExecutionJobVertex getJobVertex() {
		return jobVertex;
	}

	public JobVertexID getJobvertexId() {
		return this.jobVertex.getJobVertexId();
	}

	public String getTaskName() {
		return this.jobVertex.getJobVertex().getName();
	}

	/**
	 * Creates a simple name representation in the style 'taskname (x/y)', where
	 * 'taskname' is the name as returned by {@link #getTaskName()}, 'x' is the parallel
	 * subtask index as returned by {@link #getParallelSubtaskIndex()}{@code + 1}, and 'y' is the total
	 * number of tasks, as returned by {@link #getTotalNumberOfParallelSubtasks()}.
	 *
	 * @return A simple name representation in the form 'myTask (2/7)'
	 */
	@Override
	public String getTaskNameWithSubtaskIndex() {
		return this.taskNameWithSubtask;
	}

	public int getTotalNumberOfParallelSubtasks() {
		return this.jobVertex.getParallelism();
	}

	public int getMaxParallelism() {
		return this.jobVertex.getMaxParallelism();
	}

	@Override
	public int getParallelSubtaskIndex() {
		return this.subTaskIndex;
	}

	public int getNumberOfInputs() {
		return this.inputEdges.length;
	}

	public ExecutionEdge[] getInputEdges(int input) {
		if (input < 0 || input >= this.inputEdges.length) {
			throw new IllegalArgumentException(String.format("Input %d is out of range [0..%d)", input, this.inputEdges.length));
		}
		return inputEdges[input];
	}

	public CoLocationConstraint getLocationConstraint() {
		return locationConstraint;
	}

	@Override
	public Execution getCurrentExecutionAttempt() {
		return currentExecution;
	}

	@Override
	public ExecutionState getExecutionState() {
		return currentExecution.getState();
	}

	@Override
	public long getStateTimestamp(ExecutionState state) {
		return currentExecution.getStateTimestamp(state);
	}

	@Override
	public String getFailureCauseAsString() {
		return ExceptionUtils.stringifyException(getFailureCause());
	}

	public Throwable getFailureCause() {
		return currentExecution.getFailureCause();
	}

	public SimpleSlot getCurrentAssignedResource() {
		return currentExecution.getAssignedResource();
	}

	@Override
	public TaskManagerLocation getCurrentAssignedResourceLocation() {
		return currentExecution.getAssignedResourceLocation();
	}

	@Override
	public Execution getPriorExecutionAttempt(int attemptNumber) {
		synchronized (priorExecutions) {
			if (attemptNumber >= 0 && attemptNumber < priorExecutions.size()) {
				return priorExecutions.get(attemptNumber);
			} else {
				throw new IllegalArgumentException("attempt does not exist");
			}
		}
	}

	/**
	 * Gets the location where the latest completed/canceled/failed execution of the vertex's
	 * task happened.
	 * 
	 * @return The latest prior execution location, or null, if there is none, yet.
	 */
	public TaskManagerLocation getLatestPriorLocation() {
		synchronized (priorExecutions) {
			final int size = priorExecutions.size();
			if (size > 0) {
				return priorExecutions.get(size - 1).getAssignedResourceLocation();
			}
			else {
				return null;
			}
		}
	}

	EvictingBoundedList getCopyOfPriorExecutionsList() {
		synchronized (priorExecutions) {
			return new EvictingBoundedList<>(priorExecutions);
		}
	}

	public ExecutionGraph getExecutionGraph() {
		return this.jobVertex.getGraph();
	}

	public Map getProducedPartitions() {
		return resultPartitions;
	}

	// --------------------------------------------------------------------------------------------
	//  Graph building
	// --------------------------------------------------------------------------------------------

	public void connectSource(int inputNumber, IntermediateResult source, JobEdge edge, int consumerNumber) {

		final DistributionPattern pattern = edge.getDistributionPattern();
		final IntermediateResultPartition[] sourcePartitions = source.getPartitions();

		ExecutionEdge[] edges;

		switch (pattern) {
			case POINTWISE:
				edges = connectPointwise(sourcePartitions, inputNumber);
				break;

			case ALL_TO_ALL:
				edges = connectAllToAll(sourcePartitions, inputNumber);
				break;

			default:
				throw new RuntimeException("Unrecognized distribution pattern.");

		}

		this.inputEdges[inputNumber] = edges;

		// add the consumers to the source
		// for now (until the receiver initiated handshake is in place), we need to register the
		// edges as the execution graph
		for (ExecutionEdge ee : edges) {
			ee.getSource().addConsumer(ee, consumerNumber);
		}
	}

	private ExecutionEdge[] connectAllToAll(IntermediateResultPartition[] sourcePartitions, int inputNumber) {
		ExecutionEdge[] edges = new ExecutionEdge[sourcePartitions.length];

		for (int i = 0; i < sourcePartitions.length; i++) {
			IntermediateResultPartition irp = sourcePartitions[i];
			edges[i] = new ExecutionEdge(irp, this, inputNumber);
		}

		return edges;
	}

	private ExecutionEdge[] connectPointwise(IntermediateResultPartition[] sourcePartitions, int inputNumber) {
		final int numSources = sourcePartitions.length;
		final int parallelism = getTotalNumberOfParallelSubtasks();

		// simple case same number of sources as targets
		if (numSources == parallelism) {
			return new ExecutionEdge[] { new ExecutionEdge(sourcePartitions[subTaskIndex], this, inputNumber) };
		}
		else if (numSources < parallelism) {

			int sourcePartition;

			// check if the pattern is regular or irregular
			// we use int arithmetics for regular, and floating point with rounding for irregular
			if (parallelism % numSources == 0) {
				// same number of targets per source
				int factor = parallelism / numSources;
				sourcePartition = subTaskIndex / factor;
			}
			else {
				// different number of targets per source
				float factor = ((float) parallelism) / numSources;
				sourcePartition = (int) (subTaskIndex / factor);
			}

			return new ExecutionEdge[] { new ExecutionEdge(sourcePartitions[sourcePartition], this, inputNumber) };
		}
		else {
			if (numSources % parallelism == 0) {
				// same number of targets per source
				int factor = numSources / parallelism;
				int startIndex = subTaskIndex * factor;

				ExecutionEdge[] edges = new ExecutionEdge[factor];
				for (int i = 0; i < factor; i++) {
					edges[i] = new ExecutionEdge(sourcePartitions[startIndex + i], this, inputNumber);
				}
				return edges;
			}
			else {
				float factor = ((float) numSources) / parallelism;

				int start = (int) (subTaskIndex * factor);
				int end = (subTaskIndex == getTotalNumberOfParallelSubtasks() - 1) ?
						sourcePartitions.length :
						(int) ((subTaskIndex + 1) * factor);

				ExecutionEdge[] edges = new ExecutionEdge[end - start];
				for (int i = 0; i < edges.length; i++) {
					edges[i] = new ExecutionEdge(sourcePartitions[start + i], this, inputNumber);
				}

				return edges;
			}
		}
	}

	/**
	 * Gets the overall preferred execution location for this vertex's current execution.
	 * The preference is determined as follows:
	 * 
	 * 
    *
  1. If the task execution has state to load (from a checkpoint), then the location preference * is the location of the previous execution (if there is a previous execution attempt). *
  2. If the task execution has no state or no previous location, then the location preference * is based on the task's inputs. *
* * These rules should result in the following behavior: * *
    *
  • Stateless tasks are always scheduled based on co-location with inputs. *
  • Stateful tasks are on their initial attempt executed based on co-location with inputs. *
  • Repeated executions of stateful tasks try to co-locate the execution with its state. *
* * @return The preferred excution locations for the execution attempt. * * @see #getPreferredLocationsBasedOnState() * @see #getPreferredLocationsBasedOnInputs() */ public Iterable getPreferredLocations() { Iterable basedOnState = getPreferredLocationsBasedOnState(); return basedOnState != null ? basedOnState : getPreferredLocationsBasedOnInputs(); } /** * Gets the preferred location to execute the current task execution attempt, based on the state * that the execution attempt will resume. * * @return A size-one iterable with the location preference, or null, if there is no * location preference based on the state. */ public Iterable getPreferredLocationsBasedOnState() { TaskManagerLocation priorLocation; if (currentExecution.getTaskStateHandles() != null && (priorLocation = getLatestPriorLocation()) != null) { return Collections.singleton(priorLocation); } else { return null; } } /** * Gets the location preferences of the vertex's current task execution, as determined by the locations * of the predecessors from which it receives input data. * If there are more than MAX_DISTINCT_LOCATIONS_TO_CONSIDER different locations of source data, this * method returns {@code null} to indicate no location preference. * * @return The preferred locations based in input streams, or an empty iterable, * if there is no input-based preference. */ public Iterable getPreferredLocationsBasedOnInputs() { // otherwise, base the preferred locations on the input connections if (inputEdges == null) { return Collections.emptySet(); } else { Set locations = new HashSet<>(); Set inputLocations = new HashSet<>(); // go over all inputs for (int i = 0; i < inputEdges.length; i++) { inputLocations.clear(); ExecutionEdge[] sources = inputEdges[i]; if (sources != null) { // go over all input sources for (int k = 0; k < sources.length; k++) { // look-up assigned slot of input source SimpleSlot sourceSlot = sources[k].getSource().getProducer().getCurrentAssignedResource(); if (sourceSlot != null) { // add input location inputLocations.add(sourceSlot.getTaskManagerLocation()); // inputs which have too many distinct sources are not considered if (inputLocations.size() > MAX_DISTINCT_LOCATIONS_TO_CONSIDER) { inputLocations.clear(); break; } } } } // keep the locations of the input with the least preferred locations if (locations.isEmpty() || // nothing assigned yet (!inputLocations.isEmpty() && inputLocations.size() < locations.size())) { // current input has fewer preferred locations locations.clear(); locations.addAll(inputLocations); } } return locations.isEmpty() ? Collections.emptyList() : locations; } } // -------------------------------------------------------------------------------------------- // Actions // -------------------------------------------------------------------------------------------- /** * Archives the current Execution and creates a new Execution for this vertex. * *

This method atomically checks if the ExecutionGraph is still of an expected * global mod. version and replaces the execution if that is the case. If the ExecutionGraph * has increased its global mod. version in the meantime, this operation fails. * *

This mechanism can be used to prevent conflicts between various concurrent recovery and * reconfiguration actions in a similar way as "optimistic concurrency control". * * @param timestamp * The creation timestamp for the new Execution * @param originatingGlobalModVersion * The * * @return Returns the new created Execution. * * @throws GlobalModVersionMismatch Thrown, if the execution graph has a new global mod * version than the one passed to this message. */ public Execution resetForNewExecution(final long timestamp, final long originatingGlobalModVersion) throws GlobalModVersionMismatch { LOG.debug("Resetting execution vertex {} for new execution.", getTaskNameWithSubtaskIndex()); synchronized (priorExecutions) { // check if another global modification has been triggered since the // action that originally caused this reset/restart happened final long actualModVersion = getExecutionGraph().getGlobalModVersion(); if (actualModVersion > originatingGlobalModVersion) { // global change happened since, reject this action throw new GlobalModVersionMismatch(originatingGlobalModVersion, actualModVersion); } final Execution oldExecution = currentExecution; final ExecutionState oldState = oldExecution.getState(); if (oldState.isTerminal()) { priorExecutions.add(oldExecution); final Execution newExecution = new Execution( getExecutionGraph().getFutureExecutor(), this, oldExecution.getAttemptNumber() + 1, originatingGlobalModVersion, timestamp, timeout); this.currentExecution = newExecution; CoLocationGroup grp = jobVertex.getCoLocationGroup(); if (grp != null) { this.locationConstraint = grp.getLocationConstraint(subTaskIndex); } // register this execution at the execution graph, to receive call backs getExecutionGraph().registerExecution(newExecution); // if the execution was 'FINISHED' before, tell the ExecutionGraph that // we take one step back on the road to reaching global FINISHED if (oldState == FINISHED) { getExecutionGraph().vertexUnFinished(); } return newExecution; } else { throw new IllegalStateException("Cannot reset a vertex that is in non-terminal state " + oldState); } } } public boolean scheduleForExecution(SlotProvider slotProvider, boolean queued) { return this.currentExecution.scheduleForExecution(slotProvider, queued); } public void deployToSlot(SimpleSlot slot) throws JobException { this.currentExecution.deployToSlot(slot); } /** * * @return A future that completes once the execution has reached its final state. */ public Future cancel() { // to avoid any case of mixup in the presence of concurrent calls, // we copy a reference to the stack to make sure both calls go to the same Execution final Execution exec = this.currentExecution; exec.cancel(); return exec.getTerminationFuture(); } public void stop() { this.currentExecution.stop(); } public void fail(Throwable t) { this.currentExecution.fail(t); } /** * Schedules or updates the consumer tasks of the result partition with the given ID. */ void scheduleOrUpdateConsumers(ResultPartitionID partitionId) { final Execution execution = currentExecution; // Abort this request if there was a concurrent reset if (!partitionId.getProducerId().equals(execution.getAttemptId())) { return; } final IntermediateResultPartition partition = resultPartitions.get(partitionId.getPartitionId()); if (partition == null) { throw new IllegalStateException("Unknown partition " + partitionId + "."); } if (partition.getIntermediateResult().getResultType().isPipelined()) { // Schedule or update receivers of this partition execution.scheduleOrUpdateConsumers(partition.getConsumers()); } else { throw new IllegalArgumentException("ScheduleOrUpdateConsumers msg is only valid for" + "pipelined partitions."); } } public void cachePartitionInfo(PartialInputChannelDeploymentDescriptor partitionInfo){ getCurrentExecutionAttempt().cachePartitionInfo(partitionInfo); } void sendPartitionInfos() { currentExecution.sendPartitionInfos(); } /** * Returns all blocking result partitions whose receivers can be scheduled/updated. */ List finishAllBlockingPartitions() { List finishedBlockingPartitions = null; for (IntermediateResultPartition partition : resultPartitions.values()) { if (partition.getResultType().isBlocking() && partition.markFinished()) { if (finishedBlockingPartitions == null) { finishedBlockingPartitions = new LinkedList(); } finishedBlockingPartitions.add(partition); } } if (finishedBlockingPartitions == null) { return Collections.emptyList(); } else { return finishedBlockingPartitions; } } // -------------------------------------------------------------------------------------------- // Notifications from the Execution Attempt // -------------------------------------------------------------------------------------------- void executionFinished(Execution execution) { getExecutionGraph().vertexFinished(); } void executionCanceled(Execution execution) { // nothing to do } void executionFailed(Execution execution, Throwable cause) { // nothing to do } // -------------------------------------------------------------------------------------------- // Miscellaneous // -------------------------------------------------------------------------------------------- /** * Simply forward this notification */ void notifyStateTransition(Execution execution, ExecutionState newState, Throwable error) { // only forward this notification if the execution is still the current execution // otherwise we have an outdated execution if (currentExecution == execution) { getExecutionGraph().notifyExecutionChange(execution, newState, error); } } /** * Creates a task deployment descriptor to deploy a subtask to the given target slot. * * TODO: This should actually be in the EXECUTION */ TaskDeploymentDescriptor createDeploymentDescriptor( ExecutionAttemptID executionId, SimpleSlot targetSlot, TaskStateHandles taskStateHandles, int attemptNumber) throws ExecutionGraphException { // Produced intermediate results List producedPartitions = new ArrayList<>(resultPartitions.size()); // Consumed intermediate results List consumedPartitions = new ArrayList<>(inputEdges.length); boolean lazyScheduling = getExecutionGraph().getScheduleMode().allowLazyDeployment(); for (IntermediateResultPartition partition : resultPartitions.values()) { List> consumers = partition.getConsumers(); if (consumers.isEmpty()) { //TODO this case only exists for test, currently there has to be exactly one consumer in real jobs! producedPartitions.add(ResultPartitionDeploymentDescriptor.from( partition, KeyGroupRangeAssignment.UPPER_BOUND_MAX_PARALLELISM, lazyScheduling)); } else { Preconditions.checkState(1 == consumers.size(), "Only one consumer supported in the current implementation! Found: " + consumers.size()); List consumer = consumers.get(0); ExecutionJobVertex vertex = consumer.get(0).getTarget().getJobVertex(); int maxParallelism = vertex.getMaxParallelism(); producedPartitions.add(ResultPartitionDeploymentDescriptor.from(partition, maxParallelism, lazyScheduling)); } } for (ExecutionEdge[] edges : inputEdges) { InputChannelDeploymentDescriptor[] partitions = InputChannelDeploymentDescriptor .fromEdges(edges, targetSlot, lazyScheduling); // If the produced partition has multiple consumers registered, we // need to request the one matching our sub task index. // TODO Refactor after removing the consumers from the intermediate result partitions int numConsumerEdges = edges[0].getSource().getConsumers().get(0).size(); int queueToRequest = subTaskIndex % numConsumerEdges; IntermediateResult consumedIntermediateResult = edges[0].getSource().getIntermediateResult(); final IntermediateDataSetID resultId = consumedIntermediateResult.getId(); final ResultPartitionType partitionType = consumedIntermediateResult.getResultType(); consumedPartitions.add(new InputGateDeploymentDescriptor(resultId, partitionType, queueToRequest, partitions)); } SerializedValue serializedJobInformation = getExecutionGraph().getSerializedJobInformation(); SerializedValue serializedJobVertexInformation = null; try { serializedJobVertexInformation = jobVertex.getSerializedTaskInformation(); } catch (IOException e) { throw new ExecutionGraphException( "Could not create a serialized JobVertexInformation for " + jobVertex.getJobVertexId(), e); } return new TaskDeploymentDescriptor( serializedJobInformation, serializedJobVertexInformation, executionId, targetSlot.getAllocatedSlot().getSlotAllocationId(), subTaskIndex, attemptNumber, targetSlot.getRoot().getSlotNumber(), taskStateHandles, producedPartitions, consumedPartitions); } // -------------------------------------------------------------------------------------------- // Utilities // -------------------------------------------------------------------------------------------- @Override public String toString() { return getTaskNameWithSubtaskIndex(); } @Override public ArchivedExecutionVertex archive() { return new ArchivedExecutionVertex(this); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy