org.apache.flink.runtime.executiongraph.ExecutionVertex Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.runtime.executiongraph;
import org.apache.flink.annotation.VisibleForTesting;
import org.apache.flink.api.common.Archiveable;
import org.apache.flink.api.common.InputDependencyConstraint;
import org.apache.flink.api.common.JobID;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.configuration.JobManagerOptions;
import org.apache.flink.core.io.InputSplit;
import org.apache.flink.core.io.InputSplitAssigner;
import org.apache.flink.runtime.JobException;
import org.apache.flink.runtime.clusterframework.types.AllocationID;
import org.apache.flink.runtime.clusterframework.types.ResourceProfile;
import org.apache.flink.runtime.execution.ExecutionState;
import org.apache.flink.runtime.io.network.partition.ResultPartitionID;
import org.apache.flink.runtime.jobgraph.DistributionPattern;
import org.apache.flink.runtime.jobgraph.IntermediateResultPartitionID;
import org.apache.flink.runtime.jobgraph.JobEdge;
import org.apache.flink.runtime.jobgraph.JobVertexID;
import org.apache.flink.runtime.jobmanager.scheduler.CoLocationConstraint;
import org.apache.flink.runtime.jobmanager.scheduler.CoLocationGroup;
import org.apache.flink.runtime.jobmanager.scheduler.LocationPreferenceConstraint;
import org.apache.flink.runtime.jobmaster.LogicalSlot;
import org.apache.flink.runtime.scheduler.strategy.ExecutionVertexID;
import org.apache.flink.runtime.taskmanager.TaskManagerLocation;
import org.apache.flink.runtime.util.EvictingBoundedList;
import org.apache.flink.util.ExceptionUtils;
import org.slf4j.Logger;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.concurrent.CompletableFuture;
import static org.apache.flink.runtime.execution.ExecutionState.FINISHED;
/**
* The ExecutionVertex is a parallel subtask of the execution. It may be executed once, or several times, each of
* which time it spawns an {@link Execution}.
*/
public class ExecutionVertex implements AccessExecutionVertex, Archiveable {
private static final Logger LOG = ExecutionGraph.LOG;
public static final int MAX_DISTINCT_LOCATIONS_TO_CONSIDER = 8;
// --------------------------------------------------------------------------------------------
private final ExecutionJobVertex jobVertex;
private final Map resultPartitions;
private final ExecutionEdge[][] inputEdges;
private final int subTaskIndex;
private final ExecutionVertexID executionVertexId;
private final EvictingBoundedList priorExecutions;
private final Time timeout;
/** The name in the format "myTask (2/7)", cached to avoid frequent string concatenations. */
private final String taskNameWithSubtask;
private CoLocationConstraint locationConstraint;
/** The current or latest execution attempt of this vertex's task. */
private Execution currentExecution; // this field must never be null
private final ArrayList inputSplits;
// --------------------------------------------------------------------------------------------
/**
* Convenience constructor for tests. Sets various fields to default values.
*/
@VisibleForTesting
ExecutionVertex(
ExecutionJobVertex jobVertex,
int subTaskIndex,
IntermediateResult[] producedDataSets,
Time timeout) {
this(
jobVertex,
subTaskIndex,
producedDataSets,
timeout,
1L,
System.currentTimeMillis(),
JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE.defaultValue());
}
/**
* Creates an ExecutionVertex.
*
* @param timeout
* The RPC timeout to use for deploy / cancel calls
* @param initialGlobalModVersion
* The global modification version to initialize the first Execution with.
* @param createTimestamp
* The timestamp for the vertex creation, used to initialize the first Execution with.
* @param maxPriorExecutionHistoryLength
* The number of prior Executions (= execution attempts) to keep.
*/
public ExecutionVertex(
ExecutionJobVertex jobVertex,
int subTaskIndex,
IntermediateResult[] producedDataSets,
Time timeout,
long initialGlobalModVersion,
long createTimestamp,
int maxPriorExecutionHistoryLength) {
this.jobVertex = jobVertex;
this.subTaskIndex = subTaskIndex;
this.executionVertexId = new ExecutionVertexID(jobVertex.getJobVertexId(), subTaskIndex);
this.taskNameWithSubtask = String.format("%s (%d/%d)",
jobVertex.getJobVertex().getName(), subTaskIndex + 1, jobVertex.getParallelism());
this.resultPartitions = new LinkedHashMap<>(producedDataSets.length, 1);
for (IntermediateResult result : producedDataSets) {
IntermediateResultPartition irp = new IntermediateResultPartition(result, this, subTaskIndex);
result.setPartition(subTaskIndex, irp);
resultPartitions.put(irp.getPartitionId(), irp);
}
this.inputEdges = new ExecutionEdge[jobVertex.getJobVertex().getInputs().size()][];
this.priorExecutions = new EvictingBoundedList<>(maxPriorExecutionHistoryLength);
this.currentExecution = new Execution(
getExecutionGraph().getFutureExecutor(),
this,
0,
initialGlobalModVersion,
createTimestamp,
timeout);
// create a co-location scheduling hint, if necessary
CoLocationGroup clg = jobVertex.getCoLocationGroup();
if (clg != null) {
this.locationConstraint = clg.getLocationConstraint(subTaskIndex);
}
else {
this.locationConstraint = null;
}
getExecutionGraph().registerExecution(currentExecution);
this.timeout = timeout;
this.inputSplits = new ArrayList<>();
}
// --------------------------------------------------------------------------------------------
// Properties
// --------------------------------------------------------------------------------------------
public JobID getJobId() {
return this.jobVertex.getJobId();
}
public ExecutionJobVertex getJobVertex() {
return jobVertex;
}
public JobVertexID getJobvertexId() {
return this.jobVertex.getJobVertexId();
}
public String getTaskName() {
return this.jobVertex.getJobVertex().getName();
}
/**
* Creates a simple name representation in the style 'taskname (x/y)', where
* 'taskname' is the name as returned by {@link #getTaskName()}, 'x' is the parallel
* subtask index as returned by {@link #getParallelSubtaskIndex()}{@code + 1}, and 'y' is the total
* number of tasks, as returned by {@link #getTotalNumberOfParallelSubtasks()}.
*
* @return A simple name representation in the form 'myTask (2/7)'
*/
@Override
public String getTaskNameWithSubtaskIndex() {
return this.taskNameWithSubtask;
}
public int getTotalNumberOfParallelSubtasks() {
return this.jobVertex.getParallelism();
}
public int getMaxParallelism() {
return this.jobVertex.getMaxParallelism();
}
public ResourceProfile getResourceProfile() {
return this.jobVertex.getResourceProfile();
}
@Override
public int getParallelSubtaskIndex() {
return this.subTaskIndex;
}
public ExecutionVertexID getID() {
return executionVertexId;
}
public int getNumberOfInputs() {
return this.inputEdges.length;
}
public ExecutionEdge[] getInputEdges(int input) {
if (input < 0 || input >= inputEdges.length) {
throw new IllegalArgumentException(String.format("Input %d is out of range [0..%d)", input, inputEdges.length));
}
return inputEdges[input];
}
public ExecutionEdge[][] getAllInputEdges() {
return inputEdges;
}
public CoLocationConstraint getLocationConstraint() {
return locationConstraint;
}
public InputSplit getNextInputSplit(String host) {
final int taskId = getParallelSubtaskIndex();
synchronized (inputSplits) {
final InputSplit nextInputSplit = jobVertex.getSplitAssigner().getNextInputSplit(host, taskId);
if (nextInputSplit != null) {
inputSplits.add(nextInputSplit);
}
return nextInputSplit;
}
}
@Override
public Execution getCurrentExecutionAttempt() {
return currentExecution;
}
@Override
public ExecutionState getExecutionState() {
return currentExecution.getState();
}
@Override
public long getStateTimestamp(ExecutionState state) {
return currentExecution.getStateTimestamp(state);
}
@Override
public String getFailureCauseAsString() {
return ExceptionUtils.stringifyException(getFailureCause());
}
public Throwable getFailureCause() {
return currentExecution.getFailureCause();
}
public CompletableFuture getCurrentTaskManagerLocationFuture() {
return currentExecution.getTaskManagerLocationFuture();
}
public LogicalSlot getCurrentAssignedResource() {
return currentExecution.getAssignedResource();
}
@Override
public TaskManagerLocation getCurrentAssignedResourceLocation() {
return currentExecution.getAssignedResourceLocation();
}
@Nullable
@Override
public ArchivedExecution getPriorExecutionAttempt(int attemptNumber) {
synchronized (priorExecutions) {
if (attemptNumber >= 0 && attemptNumber < priorExecutions.size()) {
return priorExecutions.get(attemptNumber);
} else {
throw new IllegalArgumentException("attempt does not exist");
}
}
}
public ArchivedExecution getLatestPriorExecution() {
synchronized (priorExecutions) {
final int size = priorExecutions.size();
if (size > 0) {
return priorExecutions.get(size - 1);
}
else {
return null;
}
}
}
/**
* Gets the location where the latest completed/canceled/failed execution of the vertex's
* task happened.
*
* @return The latest prior execution location, or null, if there is none, yet.
*/
public TaskManagerLocation getLatestPriorLocation() {
ArchivedExecution latestPriorExecution = getLatestPriorExecution();
return latestPriorExecution != null ? latestPriorExecution.getAssignedResourceLocation() : null;
}
public AllocationID getLatestPriorAllocation() {
ArchivedExecution latestPriorExecution = getLatestPriorExecution();
return latestPriorExecution != null ? latestPriorExecution.getAssignedAllocationID() : null;
}
EvictingBoundedList getCopyOfPriorExecutionsList() {
synchronized (priorExecutions) {
return new EvictingBoundedList<>(priorExecutions);
}
}
public ExecutionGraph getExecutionGraph() {
return this.jobVertex.getGraph();
}
public Map getProducedPartitions() {
return resultPartitions;
}
public InputDependencyConstraint getInputDependencyConstraint() {
return getJobVertex().getInputDependencyConstraint();
}
// --------------------------------------------------------------------------------------------
// Graph building
// --------------------------------------------------------------------------------------------
public void connectSource(int inputNumber, IntermediateResult source, JobEdge edge, int consumerNumber) {
final DistributionPattern pattern = edge.getDistributionPattern();
final IntermediateResultPartition[] sourcePartitions = source.getPartitions();
ExecutionEdge[] edges;
switch (pattern) {
case POINTWISE:
edges = connectPointwise(sourcePartitions, inputNumber);
break;
case ALL_TO_ALL:
edges = connectAllToAll(sourcePartitions, inputNumber);
break;
default:
throw new RuntimeException("Unrecognized distribution pattern.");
}
inputEdges[inputNumber] = edges;
// add the consumers to the source
// for now (until the receiver initiated handshake is in place), we need to register the
// edges as the execution graph
for (ExecutionEdge ee : edges) {
ee.getSource().addConsumer(ee, consumerNumber);
}
}
private ExecutionEdge[] connectAllToAll(IntermediateResultPartition[] sourcePartitions, int inputNumber) {
ExecutionEdge[] edges = new ExecutionEdge[sourcePartitions.length];
for (int i = 0; i < sourcePartitions.length; i++) {
IntermediateResultPartition irp = sourcePartitions[i];
edges[i] = new ExecutionEdge(irp, this, inputNumber);
}
return edges;
}
private ExecutionEdge[] connectPointwise(IntermediateResultPartition[] sourcePartitions, int inputNumber) {
final int numSources = sourcePartitions.length;
final int parallelism = getTotalNumberOfParallelSubtasks();
// simple case same number of sources as targets
if (numSources == parallelism) {
return new ExecutionEdge[] { new ExecutionEdge(sourcePartitions[subTaskIndex], this, inputNumber) };
}
else if (numSources < parallelism) {
int sourcePartition;
// check if the pattern is regular or irregular
// we use int arithmetics for regular, and floating point with rounding for irregular
if (parallelism % numSources == 0) {
// same number of targets per source
int factor = parallelism / numSources;
sourcePartition = subTaskIndex / factor;
}
else {
// different number of targets per source
float factor = ((float) parallelism) / numSources;
sourcePartition = (int) (subTaskIndex / factor);
}
return new ExecutionEdge[] { new ExecutionEdge(sourcePartitions[sourcePartition], this, inputNumber) };
}
else {
if (numSources % parallelism == 0) {
// same number of targets per source
int factor = numSources / parallelism;
int startIndex = subTaskIndex * factor;
ExecutionEdge[] edges = new ExecutionEdge[factor];
for (int i = 0; i < factor; i++) {
edges[i] = new ExecutionEdge(sourcePartitions[startIndex + i], this, inputNumber);
}
return edges;
}
else {
float factor = ((float) numSources) / parallelism;
int start = (int) (subTaskIndex * factor);
int end = (subTaskIndex == getTotalNumberOfParallelSubtasks() - 1) ?
sourcePartitions.length :
(int) ((subTaskIndex + 1) * factor);
ExecutionEdge[] edges = new ExecutionEdge[end - start];
for (int i = 0; i < edges.length; i++) {
edges[i] = new ExecutionEdge(sourcePartitions[start + i], this, inputNumber);
}
return edges;
}
}
}
/**
* Gets the overall preferred execution location for this vertex's current execution.
* The preference is determined as follows:
*
*
* - If the task execution has state to load (from a checkpoint), then the location preference
* is the location of the previous execution (if there is a previous execution attempt).
*
- If the task execution has no state or no previous location, then the location preference
* is based on the task's inputs.
*
*
* These rules should result in the following behavior:
*
*
* - Stateless tasks are always scheduled based on co-location with inputs.
*
- Stateful tasks are on their initial attempt executed based on co-location with inputs.
*
- Repeated executions of stateful tasks try to co-locate the execution with its state.
*
*
* @see #getPreferredLocationsBasedOnState()
* @see #getPreferredLocationsBasedOnInputs()
*
* @return The preferred execution locations for the execution attempt.
*/
public Collection> getPreferredLocations() {
Collection> basedOnState = getPreferredLocationsBasedOnState();
return basedOnState != null ? basedOnState : getPreferredLocationsBasedOnInputs();
}
/**
* Gets the preferred location to execute the current task execution attempt, based on the state
* that the execution attempt will resume.
*
* @return A size-one collection with the location preference, or null, if there is no
* location preference based on the state.
*/
public Collection> getPreferredLocationsBasedOnState() {
TaskManagerLocation priorLocation;
if (currentExecution.getTaskRestore() != null && (priorLocation = getLatestPriorLocation()) != null) {
return Collections.singleton(CompletableFuture.completedFuture(priorLocation));
}
else {
return null;
}
}
/**
* Gets the preferred location to execute the current task execution attempt, based on the state
* that the execution attempt will resume.
*/
public Optional getPreferredLocationBasedOnState() {
if (currentExecution.getTaskRestore() != null) {
return Optional.ofNullable(getLatestPriorLocation());
}
return Optional.empty();
}
/**
* Gets the location preferences of the vertex's current task execution, as determined by the locations
* of the predecessors from which it receives input data.
* If there are more than MAX_DISTINCT_LOCATIONS_TO_CONSIDER different locations of source data, this
* method returns {@code null} to indicate no location preference.
*
* @return The preferred locations based in input streams, or an empty iterable,
* if there is no input-based preference.
*/
public Collection> getPreferredLocationsBasedOnInputs() {
// otherwise, base the preferred locations on the input connections
if (inputEdges == null) {
return Collections.emptySet();
}
else {
Set> locations = new HashSet<>(getTotalNumberOfParallelSubtasks());
Set> inputLocations = new HashSet<>(getTotalNumberOfParallelSubtasks());
// go over all inputs
for (int i = 0; i < inputEdges.length; i++) {
inputLocations.clear();
ExecutionEdge[] sources = inputEdges[i];
if (sources != null) {
// go over all input sources
for (int k = 0; k < sources.length; k++) {
// look-up assigned slot of input source
CompletableFuture locationFuture = sources[k].getSource().getProducer().getCurrentTaskManagerLocationFuture();
// add input location
inputLocations.add(locationFuture);
// inputs which have too many distinct sources are not considered
if (inputLocations.size() > MAX_DISTINCT_LOCATIONS_TO_CONSIDER) {
inputLocations.clear();
break;
}
}
}
// keep the locations of the input with the least preferred locations
if (locations.isEmpty() || // nothing assigned yet
(!inputLocations.isEmpty() && inputLocations.size() < locations.size())) {
// current input has fewer preferred locations
locations.clear();
locations.addAll(inputLocations);
}
}
return locations.isEmpty() ? Collections.emptyList() : locations;
}
}
// --------------------------------------------------------------------------------------------
// Actions
// --------------------------------------------------------------------------------------------
/**
* Archives the current Execution and creates a new Execution for this vertex.
*
* This method atomically checks if the ExecutionGraph is still of an expected
* global mod. version and replaces the execution if that is the case. If the ExecutionGraph
* has increased its global mod. version in the meantime, this operation fails.
*
*
This mechanism can be used to prevent conflicts between various concurrent recovery and
* reconfiguration actions in a similar way as "optimistic concurrency control".
*
* @param timestamp
* The creation timestamp for the new Execution
* @param originatingGlobalModVersion
*
* @return Returns the new created Execution.
*
* @throws GlobalModVersionMismatch Thrown, if the execution graph has a new global mod
* version than the one passed to this message.
*/
public Execution resetForNewExecution(final long timestamp, final long originatingGlobalModVersion)
throws GlobalModVersionMismatch {
LOG.debug("Resetting execution vertex {} for new execution.", getTaskNameWithSubtaskIndex());
synchronized (priorExecutions) {
// check if another global modification has been triggered since the
// action that originally caused this reset/restart happened
final long actualModVersion = getExecutionGraph().getGlobalModVersion();
if (actualModVersion > originatingGlobalModVersion) {
// global change happened since, reject this action
throw new GlobalModVersionMismatch(originatingGlobalModVersion, actualModVersion);
}
return resetForNewExecutionInternal(timestamp, originatingGlobalModVersion);
}
}
public void resetForNewExecution() {
resetForNewExecutionInternal(System.currentTimeMillis(), getExecutionGraph().getGlobalModVersion());
}
private Execution resetForNewExecutionInternal(final long timestamp, final long originatingGlobalModVersion) {
final Execution oldExecution = currentExecution;
final ExecutionState oldState = oldExecution.getState();
if (oldState.isTerminal()) {
if (oldState == FINISHED) {
// pipelined partitions are released in Execution#cancel(), covering both job failures and vertex resets
// do not release pipelined partitions here to save RPC calls
oldExecution.handlePartitionCleanup(false, true);
getExecutionGraph().getPartitionReleaseStrategy().vertexUnfinished(executionVertexId);
}
priorExecutions.add(oldExecution.archive());
final Execution newExecution = new Execution(
getExecutionGraph().getFutureExecutor(),
this,
oldExecution.getAttemptNumber() + 1,
originatingGlobalModVersion,
timestamp,
timeout);
currentExecution = newExecution;
synchronized (inputSplits) {
InputSplitAssigner assigner = jobVertex.getSplitAssigner();
if (assigner != null) {
assigner.returnInputSplit(inputSplits, getParallelSubtaskIndex());
inputSplits.clear();
}
}
CoLocationGroup grp = jobVertex.getCoLocationGroup();
if (grp != null) {
locationConstraint = grp.getLocationConstraint(subTaskIndex);
}
// register this execution at the execution graph, to receive call backs
getExecutionGraph().registerExecution(newExecution);
// if the execution was 'FINISHED' before, tell the ExecutionGraph that
// we take one step back on the road to reaching global FINISHED
if (oldState == FINISHED) {
getExecutionGraph().vertexUnFinished();
}
// reset the intermediate results
for (IntermediateResultPartition resultPartition : resultPartitions.values()) {
resultPartition.resetForNewExecution();
}
return newExecution;
}
else {
throw new IllegalStateException("Cannot reset a vertex that is in non-terminal state " + oldState);
}
}
/**
* Schedules the current execution of this ExecutionVertex.
*
* @param slotProviderStrategy to allocate the slots from
* @param locationPreferenceConstraint constraint for the location preferences
* @param allPreviousExecutionGraphAllocationIds set with all previous allocation ids in the job graph.
* Can be empty if the allocation ids are not required for scheduling.
* @return Future which is completed once the execution is deployed. The future
* can also completed exceptionally.
*/
public CompletableFuture scheduleForExecution(
SlotProviderStrategy slotProviderStrategy,
LocationPreferenceConstraint locationPreferenceConstraint,
@Nonnull Set allPreviousExecutionGraphAllocationIds) {
return this.currentExecution.scheduleForExecution(
slotProviderStrategy,
locationPreferenceConstraint,
allPreviousExecutionGraphAllocationIds);
}
public void tryAssignResource(LogicalSlot slot) {
if (!currentExecution.tryAssignResource(slot)) {
throw new IllegalStateException("Could not assign resource " + slot + " to current execution " +
currentExecution + '.');
}
}
public void deploy() throws JobException {
currentExecution.deploy();
}
@VisibleForTesting
public void deployToSlot(LogicalSlot slot) throws JobException {
if (currentExecution.tryAssignResource(slot)) {
currentExecution.deploy();
} else {
throw new IllegalStateException("Could not assign resource " + slot + " to current execution " +
currentExecution + '.');
}
}
/**
* Cancels this ExecutionVertex.
*
* @return A future that completes once the execution has reached its final state.
*/
public CompletableFuture> cancel() {
// to avoid any case of mixup in the presence of concurrent calls,
// we copy a reference to the stack to make sure both calls go to the same Execution
final Execution exec = currentExecution;
exec.cancel();
return exec.getReleaseFuture();
}
public CompletableFuture> suspend() {
return currentExecution.suspend();
}
public void fail(Throwable t) {
currentExecution.fail(t);
}
/**
* This method marks the task as failed, but will make no attempt to remove task execution from the task manager.
* It is intended for cases where the task is known not to be deployed yet.
*
* @param t The exception that caused the task to fail.
*/
public void markFailed(Throwable t) {
currentExecution.markFailed(t);
}
/**
* Schedules or updates the consumer tasks of the result partition with the given ID.
*/
void scheduleOrUpdateConsumers(ResultPartitionID partitionId) {
final Execution execution = currentExecution;
// Abort this request if there was a concurrent reset
if (!partitionId.getProducerId().equals(execution.getAttemptId())) {
return;
}
final IntermediateResultPartition partition = resultPartitions.get(partitionId.getPartitionId());
if (partition == null) {
throw new IllegalStateException("Unknown partition " + partitionId + ".");
}
partition.markDataProduced();
if (partition.getIntermediateResult().getResultType().isPipelined()) {
// Schedule or update receivers of this partition
execution.scheduleOrUpdateConsumers(partition.getConsumers());
}
else {
throw new IllegalArgumentException("ScheduleOrUpdateConsumers msg is only valid for" +
"pipelined partitions.");
}
}
void cachePartitionInfo(PartitionInfo partitionInfo){
getCurrentExecutionAttempt().cachePartitionInfo(partitionInfo);
}
/**
* Returns all blocking result partitions whose receivers can be scheduled/updated.
*/
List finishAllBlockingPartitions() {
List finishedBlockingPartitions = null;
for (IntermediateResultPartition partition : resultPartitions.values()) {
if (partition.getResultType().isBlocking() && partition.markFinished()) {
if (finishedBlockingPartitions == null) {
finishedBlockingPartitions = new LinkedList();
}
finishedBlockingPartitions.add(partition);
}
}
if (finishedBlockingPartitions == null) {
return Collections.emptyList();
}
else {
return finishedBlockingPartitions;
}
}
/**
* Check whether the InputDependencyConstraint is satisfied for this vertex.
*
* @return whether the input constraint is satisfied
*/
boolean checkInputDependencyConstraints() {
if (inputEdges.length == 0) {
return true;
}
final InputDependencyConstraint inputDependencyConstraint = getInputDependencyConstraint();
switch (inputDependencyConstraint) {
case ANY:
return isAnyInputConsumable();
case ALL:
return areAllInputsConsumable();
default:
throw new IllegalStateException("Unknown InputDependencyConstraint " + inputDependencyConstraint);
}
}
private boolean isAnyInputConsumable() {
for (int inputNumber = 0; inputNumber < inputEdges.length; inputNumber++) {
if (isInputConsumable(inputNumber)) {
return true;
}
}
return false;
}
private boolean areAllInputsConsumable() {
for (int inputNumber = 0; inputNumber < inputEdges.length; inputNumber++) {
if (!isInputConsumable(inputNumber)) {
return false;
}
}
return true;
}
/**
* Get whether an input of the vertex is consumable.
* An input is consumable when when any partition in it is consumable.
*
* Note that a BLOCKING result partition is only consumable when all partitions in the result are FINISHED.
*
* @return whether the input is consumable
*/
boolean isInputConsumable(int inputNumber) {
for (ExecutionEdge executionEdge : inputEdges[inputNumber]) {
if (executionEdge.getSource().isConsumable()) {
return true;
}
}
return false;
}
// --------------------------------------------------------------------------------------------
// Notifications from the Execution Attempt
// --------------------------------------------------------------------------------------------
void executionFinished(Execution execution) {
getExecutionGraph().vertexFinished();
}
// --------------------------------------------------------------------------------------------
// Miscellaneous
// --------------------------------------------------------------------------------------------
/**
* Simply forward this notification.
*/
void notifyStateTransition(Execution execution, ExecutionState newState, Throwable error) {
// only forward this notification if the execution is still the current execution
// otherwise we have an outdated execution
if (currentExecution == execution) {
getExecutionGraph().notifyExecutionChange(execution, newState, error);
}
}
// --------------------------------------------------------------------------------------------
// Utilities
// --------------------------------------------------------------------------------------------
@Override
public String toString() {
return getTaskNameWithSubtaskIndex();
}
@Override
public ArchivedExecutionVertex archive() {
return new ArchivedExecutionVertex(this);
}
public boolean isLegacyScheduling() {
return getExecutionGraph().isLegacyScheduling();
}
}