All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.runtime.checkpoint.StateAssignmentOperation Maven / Gradle / Ivy

There is a newer version: 1.13.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.runtime.checkpoint;

import org.apache.flink.annotation.Internal;
import org.apache.flink.annotation.VisibleForTesting;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.runtime.OperatorIDPair;
import org.apache.flink.runtime.checkpoint.channel.InputChannelInfo;
import org.apache.flink.runtime.checkpoint.channel.ResultSubpartitionInfo;
import org.apache.flink.runtime.executiongraph.Execution;
import org.apache.flink.runtime.executiongraph.ExecutionJobVertex;
import org.apache.flink.runtime.executiongraph.IntermediateResult;
import org.apache.flink.runtime.jobgraph.IntermediateDataSet;
import org.apache.flink.runtime.jobgraph.IntermediateDataSetID;
import org.apache.flink.runtime.jobgraph.OperatorID;
import org.apache.flink.runtime.jobgraph.OperatorInstanceID;
import org.apache.flink.runtime.state.AbstractChannelStateHandle;
import org.apache.flink.runtime.state.InputChannelStateHandle;
import org.apache.flink.runtime.state.KeyGroupRange;
import org.apache.flink.runtime.state.KeyGroupRangeAssignment;
import org.apache.flink.runtime.state.KeyGroupsStateHandle;
import org.apache.flink.runtime.state.KeyedStateHandle;
import org.apache.flink.runtime.state.ResultSubpartitionStateHandle;
import org.apache.flink.runtime.state.StateObject;
import org.apache.flink.util.Preconditions;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.function.Function;
import java.util.stream.Collectors;

import static java.util.Collections.emptyList;
import static org.apache.flink.util.Preconditions.checkNotNull;

/**
 * This class encapsulates the operation of assigning restored state when restoring from a
 * checkpoint.
 */
@Internal
public class StateAssignmentOperation {

    private static final Logger LOG = LoggerFactory.getLogger(StateAssignmentOperation.class);

    private final Set tasks;
    private final Map operatorStates;

    private final long restoreCheckpointId;
    private final boolean allowNonRestoredState;

    /** The state assignments for each ExecutionJobVertex that will be filled in multiple passes. */
    private final Map vertexAssignments;
    /**
     * Stores the assignment of a consumer. {@link IntermediateResult} only allows to traverse
     * producer.
     */
    private final Map consumerAssignment =
            new HashMap<>();

    public StateAssignmentOperation(
            long restoreCheckpointId,
            Set tasks,
            Map operatorStates,
            boolean allowNonRestoredState) {

        this.restoreCheckpointId = restoreCheckpointId;
        this.tasks = Preconditions.checkNotNull(tasks);
        this.operatorStates = Preconditions.checkNotNull(operatorStates);
        this.allowNonRestoredState = allowNonRestoredState;
        vertexAssignments = new HashMap<>(tasks.size());
    }

    public void assignStates() {
        Map localOperators = new HashMap<>(operatorStates);

        checkStateMappingCompleteness(allowNonRestoredState, operatorStates, tasks);

        // find the states of all operators belonging to this task and compute additional
        // information in first pass
        for (ExecutionJobVertex executionJobVertex : tasks) {
            List operatorIDPairs = executionJobVertex.getOperatorIDs();
            Map operatorStates = new HashMap<>(operatorIDPairs.size());
            for (OperatorIDPair operatorIDPair : operatorIDPairs) {
                OperatorID operatorID =
                        operatorIDPair
                                .getUserDefinedOperatorID()
                                .orElse(operatorIDPair.getGeneratedOperatorID());

                OperatorState operatorState = localOperators.remove(operatorID);
                if (operatorState == null) {
                    operatorState =
                            new OperatorState(
                                    operatorID,
                                    executionJobVertex.getParallelism(),
                                    executionJobVertex.getMaxParallelism());
                }
                operatorStates.put(operatorIDPair.getGeneratedOperatorID(), operatorState);
            }

            final TaskStateAssignment stateAssignment =
                    new TaskStateAssignment(
                            executionJobVertex,
                            operatorStates,
                            consumerAssignment,
                            vertexAssignments);
            vertexAssignments.put(executionJobVertex, stateAssignment);
            for (final IntermediateResult producedDataSet : executionJobVertex.getInputs()) {
                consumerAssignment.put(producedDataSet.getId(), stateAssignment);
            }
        }

        // repartition state
        for (TaskStateAssignment stateAssignment : vertexAssignments.values()) {
            if (stateAssignment.hasState) {
                assignAttemptState(stateAssignment);
            }
        }

        // actually assign the state
        for (TaskStateAssignment stateAssignment : vertexAssignments.values()) {
            if (stateAssignment.hasState) {
                assignTaskStateToExecutionJobVertices(stateAssignment);
            }
        }
    }

    private void assignAttemptState(TaskStateAssignment taskStateAssignment) {

        // 1. first compute the new parallelism
        checkParallelismPreconditions(taskStateAssignment);

        List keyGroupPartitions =
                createKeyGroupPartitions(
                        taskStateAssignment.executionJobVertex.getMaxParallelism(),
                        taskStateAssignment.newParallelism);

        /*
         * Redistribute ManagedOperatorStates and RawOperatorStates from old parallelism to new parallelism.
         *
         * The old ManagedOperatorStates with old parallelism 3:
         *
         * 		parallelism0 parallelism1 parallelism2
         * op0   states0,0    state0,1	   state0,2
         * op1
         * op2   states2,0    state2,1	   state1,2
         * op3   states3,0    state3,1     state3,2
         *
         * The new ManagedOperatorStates with new parallelism 4:
         *
         * 		parallelism0 parallelism1 parallelism2 parallelism3
         * op0   state0,0	  state0,1 	   state0,2		state0,3
         * op1
         * op2   state2,0	  state2,1 	   state2,2		state2,3
         * op3   state3,0	  state3,1 	   state3,2		state3,3
         */
        reDistributePartitionableStates(
                taskStateAssignment.oldState,
                taskStateAssignment.newParallelism,
                OperatorSubtaskState::getManagedOperatorState,
                RoundRobinOperatorStateRepartitioner.INSTANCE,
                taskStateAssignment.subManagedOperatorState);
        reDistributePartitionableStates(
                taskStateAssignment.oldState,
                taskStateAssignment.newParallelism,
                OperatorSubtaskState::getRawOperatorState,
                RoundRobinOperatorStateRepartitioner.INSTANCE,
                taskStateAssignment.subRawOperatorState);

        reDistributeInputChannelStates(taskStateAssignment);
        reDistributeResultSubpartitionStates(taskStateAssignment);

        reDistributeKeyedStates(keyGroupPartitions, taskStateAssignment);
    }

    private void assignTaskStateToExecutionJobVertices(TaskStateAssignment assignment) {
        ExecutionJobVertex executionJobVertex = assignment.executionJobVertex;

        List operatorIDs = executionJobVertex.getOperatorIDs();
        final int newParallelism = executionJobVertex.getParallelism();

        /*
         *  An executionJobVertex's all state handles needed to restore are something like a matrix
         *
         * 		parallelism0 parallelism1 parallelism2 parallelism3
         * op0   sh(0,0)     sh(0,1)       sh(0,2)	    sh(0,3)
         * op1   sh(1,0)	 sh(1,1)	   sh(1,2)	    sh(1,3)
         * op2   sh(2,0)	 sh(2,1)	   sh(2,2)		sh(2,3)
         * op3   sh(3,0)	 sh(3,1)	   sh(3,2)		sh(3,3)
         *
         */
        for (int subTaskIndex = 0; subTaskIndex < newParallelism; subTaskIndex++) {

            Execution currentExecutionAttempt =
                    executionJobVertex.getTaskVertices()[subTaskIndex].getCurrentExecutionAttempt();

            TaskStateSnapshot taskState = new TaskStateSnapshot(operatorIDs.size());
            boolean statelessTask = true;

            for (OperatorIDPair operatorID : operatorIDs) {
                OperatorInstanceID instanceID =
                        OperatorInstanceID.of(subTaskIndex, operatorID.getGeneratedOperatorID());

                OperatorSubtaskState operatorSubtaskState = assignment.getSubtaskState(instanceID);

                if (operatorSubtaskState.hasState()) {
                    statelessTask = false;
                }
                taskState.putSubtaskStateByOperatorID(
                        operatorID.getGeneratedOperatorID(), operatorSubtaskState);
            }

            if (!statelessTask) {
                JobManagerTaskRestore taskRestore =
                        new JobManagerTaskRestore(restoreCheckpointId, taskState);
                currentExecutionAttempt.setInitialState(taskRestore);
            }
        }
    }

    public void checkParallelismPreconditions(TaskStateAssignment taskStateAssignment) {
        for (OperatorState operatorState : taskStateAssignment.oldState.values()) {
            checkParallelismPreconditions(operatorState, taskStateAssignment.executionJobVertex);
        }
    }

    private void reDistributeKeyedStates(
            List keyGroupPartitions, TaskStateAssignment stateAssignment) {
        stateAssignment.oldState.forEach(
                (operatorID, operatorState) -> {
                    for (int subTaskIndex = 0;
                            subTaskIndex < stateAssignment.newParallelism;
                            subTaskIndex++) {
                        OperatorInstanceID instanceID =
                                OperatorInstanceID.of(subTaskIndex, operatorID);
                        Tuple2, List> subKeyedStates =
                                reAssignSubKeyedStates(
                                        operatorState,
                                        keyGroupPartitions,
                                        subTaskIndex,
                                        stateAssignment.newParallelism,
                                        operatorState.getParallelism());
                        stateAssignment.subManagedKeyedState.put(instanceID, subKeyedStates.f0);
                        stateAssignment.subRawKeyedState.put(instanceID, subKeyedStates.f1);
                    }
                });
    }

    // TODO rewrite based on operator id
    private Tuple2, List> reAssignSubKeyedStates(
            OperatorState operatorState,
            List keyGroupPartitions,
            int subTaskIndex,
            int newParallelism,
            int oldParallelism) {

        List subManagedKeyedState;
        List subRawKeyedState;

        if (newParallelism == oldParallelism) {
            if (operatorState.getState(subTaskIndex) != null) {
                subManagedKeyedState =
                        operatorState.getState(subTaskIndex).getManagedKeyedState().asList();
                subRawKeyedState = operatorState.getState(subTaskIndex).getRawKeyedState().asList();
            } else {
                subManagedKeyedState = emptyList();
                subRawKeyedState = emptyList();
            }
        } else {
            subManagedKeyedState =
                    getManagedKeyedStateHandles(
                            operatorState, keyGroupPartitions.get(subTaskIndex));
            subRawKeyedState =
                    getRawKeyedStateHandles(operatorState, keyGroupPartitions.get(subTaskIndex));
        }

        if (subManagedKeyedState.isEmpty() && subRawKeyedState.isEmpty()) {
            return new Tuple2<>(emptyList(), emptyList());
        } else {
            return new Tuple2<>(subManagedKeyedState, subRawKeyedState);
        }
    }

    public static  void reDistributePartitionableStates(
            Map oldOperatorStates,
            int newParallelism,
            Function> extractHandle,
            OperatorStateRepartitioner stateRepartitioner,
            Map> result) {

        // The nested list wraps as the level of operator -> subtask -> state object collection
        Map>> oldStates =
                splitManagedAndRawOperatorStates(oldOperatorStates, extractHandle);

        oldOperatorStates.forEach(
                (operatorID, oldOperatorState) ->
                        result.putAll(
                                applyRepartitioner(
                                        operatorID,
                                        stateRepartitioner,
                                        oldStates.get(operatorID),
                                        oldOperatorState.getParallelism(),
                                        newParallelism)));
    }

    public > void reDistributeResultSubpartitionStates(
            TaskStateAssignment assignment) {
        if (!assignment.hasOutputState) {
            return;
        }

        checkForUnsupportedToplogyChanges(
                assignment.oldState,
                OperatorSubtaskState::getResultSubpartitionState,
                assignment.outputOperatorID);

        final OperatorState outputState = assignment.oldState.get(assignment.outputOperatorID);
        final List> outputOperatorState =
                splitBySubtasks(outputState, OperatorSubtaskState::getResultSubpartitionState);

        final ExecutionJobVertex executionJobVertex = assignment.executionJobVertex;
        final List outputs =
                executionJobVertex.getJobVertex().getProducedDataSets();

        if (outputState.getParallelism() == executionJobVertex.getParallelism()) {
            assignment.resultSubpartitionStates.putAll(
                    toInstanceMap(assignment.outputOperatorID, outputOperatorState));
            return;
        }
        // Parallelism of this vertex changed, distribute ResultSubpartitionStateHandle
        // according to output mapping.
        for (int partitionIndex = 0; partitionIndex < outputs.size(); partitionIndex++) {
            final List> partitionState =
                    outputs.size() == 1
                            ? outputOperatorState
                            : getPartitionState(
                                    outputOperatorState,
                                    ResultSubpartitionInfo::getPartitionIdx,
                                    partitionIndex);
            final MappingBasedRepartitioner repartitioner =
                    new MappingBasedRepartitioner<>(
                            assignment.getOutputMapping(partitionIndex).getRescaleMappings());
            final Map> repartitioned =
                    applyRepartitioner(
                            assignment.outputOperatorID,
                            repartitioner,
                            partitionState,
                            outputOperatorState.size(),
                            executionJobVertex.getParallelism());
            addToSubtasks(assignment.resultSubpartitionStates, repartitioned);
        }
    }

    public void reDistributeInputChannelStates(TaskStateAssignment stateAssignment) {
        if (!stateAssignment.hasInputState) {
            return;
        }

        checkForUnsupportedToplogyChanges(
                stateAssignment.oldState,
                OperatorSubtaskState::getInputChannelState,
                stateAssignment.inputOperatorID);

        final ExecutionJobVertex executionJobVertex = stateAssignment.executionJobVertex;
        final List inputs = executionJobVertex.getInputs();

        // check for rescaling: no rescaling = simple reassignment
        final OperatorState inputState =
                stateAssignment.oldState.get(stateAssignment.inputOperatorID);
        final List> inputOperatorState =
                splitBySubtasks(inputState, OperatorSubtaskState::getInputChannelState);
        if (inputState.getParallelism() == executionJobVertex.getParallelism()) {
            stateAssignment.inputChannelStates.putAll(
                    toInstanceMap(stateAssignment.inputOperatorID, inputOperatorState));
            return;
        }
        // if this subtask has a different degree of parallelism, use the partitioner to figure
        // out to which subtasks the state should be reassigned. In some cases, state is
        // replicated to multiple subtasks and filtered during recovery.
        // example: if this task is downscaled from 3 to 2 and it uses a range partitioner over
        // [0;128)
        // old assignment: 0 -> [0;43); 1 -> [43;87); 2 -> [87;128)
        // new assignment: 0 -> [0;64]; 1 -> [64;128)
        // subtask 0 recovers data from old subtask 0 + 1 and subtask 1 recovers data from old
        // subtask 0 + 2
        for (int gateIndex = 0; gateIndex < inputs.size(); gateIndex++) {
            final RescaleMappings mapping =
                    stateAssignment.getInputMapping(gateIndex).getRescaleMappings();

            final List> gateState =
                    inputs.size() == 1
                            ? inputOperatorState
                            : getPartitionState(
                                    inputOperatorState, InputChannelInfo::getGateIdx, gateIndex);
            final MappingBasedRepartitioner repartitioner =
                    new MappingBasedRepartitioner(mapping);
            final Map> repartitioned =
                    applyRepartitioner(
                            stateAssignment.inputOperatorID,
                            repartitioner,
                            gateState,
                            inputOperatorState.size(),
                            stateAssignment.newParallelism);
            addToSubtasks(stateAssignment.inputChannelStates, repartitioned);
        }
    }

    private static  void addToSubtasks(Map> target, Map> toAdd) {
        toAdd.forEach(
                (key, values) ->
                        target.computeIfAbsent(key, (unused) -> new ArrayList<>(values.size()))
                                .addAll(values));
    }

    private > void checkForUnsupportedToplogyChanges(
            Map oldOperatorStates,
            Function> extractHandle,
            OperatorID expectedOperatorID) {
        final List unexpectedState =
                oldOperatorStates.entrySet().stream()
                        .filter(idAndState -> !idAndState.getKey().equals(expectedOperatorID))
                        .filter(idAndState -> hasChannelState(idAndState.getValue(), extractHandle))
                        .map(Map.Entry::getKey)
                        .collect(Collectors.toList());
        if (!unexpectedState.isEmpty()) {
            throw new IllegalStateException(
                    "Cannot recover from unaligned checkpoint when topology changes, such that "
                            + "data exchanges with persisted data are now chained.\n"
                            + "The following operators contain channel state: "
                            + unexpectedState);
        }
    }

    private > boolean hasChannelState(
            OperatorState operatorState,
            Function> extractHandle) {
        return operatorState.getSubtaskStates().values().stream()
                .anyMatch(subState -> !isEmpty(extractHandle.apply(subState)));
    }

    private > boolean isEmpty(StateObjectCollection s) {
        return s.stream().allMatch(state -> state.getOffsets().isEmpty());
    }

    private static , I> List> getPartitionState(
            List> subtaskStates, Function partitionExtractor, int partitionId) {
        return subtaskStates.stream()
                .map(
                        subtaskState ->
                                subtaskState.stream()
                                        .filter(
                                                state ->
                                                        partitionExtractor.apply(state.getInfo())
                                                                == partitionId)
                                        .collect(Collectors.toList()))
                .collect(Collectors.toList());
    }

    private static 
            Map>> splitManagedAndRawOperatorStates(
                    Map operatorStates,
                    Function> extractHandle) {
        return operatorStates.entrySet().stream()
                .collect(
                        Collectors.toMap(
                                Map.Entry::getKey,
                                operatorIdAndState ->
                                        splitBySubtasks(
                                                operatorIdAndState.getValue(), extractHandle)));
    }

    private static  List> splitBySubtasks(
            OperatorState operatorState,
            Function> extractHandle) {
        List> statePerSubtask = new ArrayList<>(operatorState.getParallelism());

        for (int subTaskIndex = 0; subTaskIndex < operatorState.getParallelism(); subTaskIndex++) {
            OperatorSubtaskState subtaskState = operatorState.getState(subTaskIndex);
            statePerSubtask.add(
                    subtaskState == null
                            ? emptyList()
                            : extractHandle.apply(subtaskState).asList());
        }

        return statePerSubtask;
    }

    /**
     * Collect {@link KeyGroupsStateHandle managedKeyedStateHandles} which have intersection with
     * given {@link KeyGroupRange} from {@link TaskState operatorState}.
     *
     * @param operatorState all state handles of a operator
     * @param subtaskKeyGroupRange the KeyGroupRange of a subtask
     * @return all managedKeyedStateHandles which have intersection with given KeyGroupRange
     */
    public static List getManagedKeyedStateHandles(
            OperatorState operatorState, KeyGroupRange subtaskKeyGroupRange) {

        final int parallelism = operatorState.getParallelism();

        List subtaskKeyedStateHandles = null;

        for (int i = 0; i < parallelism; i++) {
            if (operatorState.getState(i) != null) {

                Collection keyedStateHandles =
                        operatorState.getState(i).getManagedKeyedState();

                if (subtaskKeyedStateHandles == null) {
                    subtaskKeyedStateHandles =
                            new ArrayList<>(parallelism * keyedStateHandles.size());
                }

                extractIntersectingState(
                        keyedStateHandles, subtaskKeyGroupRange, subtaskKeyedStateHandles);
            }
        }

        return subtaskKeyedStateHandles != null ? subtaskKeyedStateHandles : emptyList();
    }

    /**
     * Collect {@link KeyGroupsStateHandle rawKeyedStateHandles} which have intersection with given
     * {@link KeyGroupRange} from {@link TaskState operatorState}.
     *
     * @param operatorState all state handles of a operator
     * @param subtaskKeyGroupRange the KeyGroupRange of a subtask
     * @return all rawKeyedStateHandles which have intersection with given KeyGroupRange
     */
    public static List getRawKeyedStateHandles(
            OperatorState operatorState, KeyGroupRange subtaskKeyGroupRange) {

        final int parallelism = operatorState.getParallelism();

        List extractedKeyedStateHandles = null;

        for (int i = 0; i < parallelism; i++) {
            if (operatorState.getState(i) != null) {

                Collection rawKeyedState =
                        operatorState.getState(i).getRawKeyedState();

                if (extractedKeyedStateHandles == null) {
                    extractedKeyedStateHandles =
                            new ArrayList<>(parallelism * rawKeyedState.size());
                }

                extractIntersectingState(
                        rawKeyedState, subtaskKeyGroupRange, extractedKeyedStateHandles);
            }
        }

        return extractedKeyedStateHandles != null ? extractedKeyedStateHandles : emptyList();
    }

    /**
     * Extracts certain key group ranges from the given state handles and adds them to the
     * collector.
     */
    @VisibleForTesting
    public static void extractIntersectingState(
            Collection originalSubtaskStateHandles,
            KeyGroupRange rangeToExtract,
            List extractedStateCollector) {

        for (KeyedStateHandle keyedStateHandle : originalSubtaskStateHandles) {

            if (keyedStateHandle != null) {

                KeyedStateHandle intersectedKeyedStateHandle =
                        keyedStateHandle.getIntersection(rangeToExtract);

                if (intersectedKeyedStateHandle != null) {
                    extractedStateCollector.add(intersectedKeyedStateHandle);
                }
            }
        }
    }

    /**
     * Groups the available set of key groups into key group partitions. A key group partition is
     * the set of key groups which is assigned to the same task. Each set of the returned list
     * constitutes a key group partition.
     *
     * 

IMPORTANT: The assignment of key groups to partitions has to be in sync with the * KeyGroupStreamPartitioner. * * @param numberKeyGroups Number of available key groups (indexed from 0 to numberKeyGroups - 1) * @param parallelism Parallelism to generate the key group partitioning for * @return List of key group partitions */ public static List createKeyGroupPartitions( int numberKeyGroups, int parallelism) { Preconditions.checkArgument(numberKeyGroups >= parallelism); List result = new ArrayList<>(parallelism); for (int i = 0; i < parallelism; ++i) { result.add( KeyGroupRangeAssignment.computeKeyGroupRangeForOperatorIndex( numberKeyGroups, parallelism, i)); } return result; } /** * Verifies conditions in regards to parallelism and maxParallelism that must be met when * restoring state. * * @param operatorState state to restore * @param executionJobVertex task for which the state should be restored */ private static void checkParallelismPreconditions( OperatorState operatorState, ExecutionJobVertex executionJobVertex) { // ----------------------------------------max parallelism // preconditions------------------------------------- if (operatorState.getMaxParallelism() < executionJobVertex.getParallelism()) { throw new IllegalStateException( "The state for task " + executionJobVertex.getJobVertexId() + " can not be restored. The maximum parallelism (" + operatorState.getMaxParallelism() + ") of the restored state is lower than the configured parallelism (" + executionJobVertex.getParallelism() + "). Please reduce the parallelism of the task to be lower or equal to the maximum parallelism."); } // check that the number of key groups have not changed or if we need to override it to // satisfy the restored state if (operatorState.getMaxParallelism() != executionJobVertex.getMaxParallelism()) { if (executionJobVertex.canRescaleMaxParallelism(operatorState.getMaxParallelism())) { LOG.debug( "Rescaling maximum parallelism for JobVertex {} from {} to {}", executionJobVertex.getJobVertexId(), executionJobVertex.getMaxParallelism(), operatorState.getMaxParallelism()); executionJobVertex.setMaxParallelism(operatorState.getMaxParallelism()); } else { // if the max parallelism cannot be rescaled, we complain on mismatch throw new IllegalStateException( "The maximum parallelism (" + operatorState.getMaxParallelism() + ") with which the latest " + "checkpoint of the execution job vertex " + executionJobVertex + " has been taken and the current maximum parallelism (" + executionJobVertex.getMaxParallelism() + ") changed. This " + "is currently not supported."); } } } /** * Verifies that all operator states can be mapped to an execution job vertex. * * @param allowNonRestoredState if false an exception will be thrown if a state could not be * mapped * @param operatorStates operator states to map * @param tasks task to map to */ private static void checkStateMappingCompleteness( boolean allowNonRestoredState, Map operatorStates, Set tasks) { Set allOperatorIDs = new HashSet<>(); for (ExecutionJobVertex executionJobVertex : tasks) { for (OperatorIDPair operatorIDPair : executionJobVertex.getOperatorIDs()) { allOperatorIDs.add(operatorIDPair.getGeneratedOperatorID()); operatorIDPair.getUserDefinedOperatorID().ifPresent(allOperatorIDs::add); } } for (Map.Entry operatorGroupStateEntry : operatorStates.entrySet()) { OperatorState operatorState = operatorGroupStateEntry.getValue(); // ----------------------------------------find operator for // state--------------------------------------------- if (!allOperatorIDs.contains(operatorGroupStateEntry.getKey())) { if (allowNonRestoredState) { LOG.info( "Skipped checkpoint state for operator {}.", operatorState.getOperatorID()); } else { throw new IllegalStateException( "There is no operator for the state " + operatorState.getOperatorID()); } } } } public static Map> applyRepartitioner( OperatorID operatorID, OperatorStateRepartitioner opStateRepartitioner, List> chainOpParallelStates, int oldParallelism, int newParallelism) { List> states = applyRepartitioner( opStateRepartitioner, chainOpParallelStates, oldParallelism, newParallelism); return toInstanceMap(operatorID, states); } private static Map> toInstanceMap( OperatorID operatorID, List> states) { Map> result = new HashMap<>(states.size()); for (int subtaskIndex = 0; subtaskIndex < states.size(); subtaskIndex++) { checkNotNull(states.get(subtaskIndex) != null, "states.get(subtaskIndex) is null"); result.put(OperatorInstanceID.of(subtaskIndex, operatorID), states.get(subtaskIndex)); } return result; } /** * Repartitions the given operator state using the given {@link OperatorStateRepartitioner} with * respect to the new parallelism. * * @param opStateRepartitioner partitioner to use * @param chainOpParallelStates state to repartition * @param oldParallelism parallelism with which the state is currently partitioned * @param newParallelism parallelism with which the state should be partitioned * @return repartitioned state */ // TODO rewrite based on operator id public static List> applyRepartitioner( OperatorStateRepartitioner opStateRepartitioner, List> chainOpParallelStates, int oldParallelism, int newParallelism) { if (chainOpParallelStates == null) { return emptyList(); } return opStateRepartitioner.repartitionState( chainOpParallelStates, oldParallelism, newParallelism); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy