org.apache.flink.runtime.checkpoint.StateAssignmentOperation Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.runtime.checkpoint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.runtime.executiongraph.Execution;
import org.apache.flink.runtime.executiongraph.ExecutionJobVertex;
import org.apache.flink.runtime.jobgraph.JobVertexID;
import org.apache.flink.runtime.jobgraph.OperatorID;
import org.apache.flink.runtime.state.ChainedStateHandle;
import org.apache.flink.runtime.state.KeyGroupRange;
import org.apache.flink.runtime.state.KeyGroupRangeAssignment;
import org.apache.flink.runtime.state.KeyGroupsStateHandle;
import org.apache.flink.runtime.state.KeyedStateHandle;
import org.apache.flink.runtime.state.OperatorStateHandle;
import org.apache.flink.runtime.state.StreamStateHandle;
import org.apache.flink.runtime.state.TaskStateHandles;
import org.apache.flink.util.Preconditions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* This class encapsulates the operation of assigning restored state when restoring from a checkpoint.
*/
public class StateAssignmentOperation {
private static final Logger LOG = LoggerFactory.getLogger(StateAssignmentOperation.class);
private final Map tasks;
private final Map operatorStates;
private final boolean allowNonRestoredState;
public StateAssignmentOperation(
Map tasks,
Map operatorStates,
boolean allowNonRestoredState) {
this.tasks = Preconditions.checkNotNull(tasks);
this.operatorStates = Preconditions.checkNotNull(operatorStates);
this.allowNonRestoredState = allowNonRestoredState;
}
public boolean assignStates() throws Exception {
Map localOperators = new HashMap<>(operatorStates);
Map localTasks = this.tasks;
checkStateMappingCompleteness(allowNonRestoredState, operatorStates, tasks);
for (Map.Entry task : localTasks.entrySet()) {
final ExecutionJobVertex executionJobVertex = task.getValue();
// find the states of all operators belonging to this task
List operatorIDs = executionJobVertex.getOperatorIDs();
List altOperatorIDs = executionJobVertex.getUserDefinedOperatorIDs();
List operatorStates = new ArrayList<>();
boolean statelessTask = true;
for (int x = 0; x < operatorIDs.size(); x++) {
OperatorID operatorID = altOperatorIDs.get(x) == null
? operatorIDs.get(x)
: altOperatorIDs.get(x);
OperatorState operatorState = localOperators.remove(operatorID);
if (operatorState == null) {
operatorState = new OperatorState(
operatorID,
executionJobVertex.getParallelism(),
executionJobVertex.getMaxParallelism());
} else {
statelessTask = false;
}
operatorStates.add(operatorState);
}
if (statelessTask) { // skip tasks where no operator has any state
continue;
}
assignAttemptState(task.getValue(), operatorStates);
}
return true;
}
private void assignAttemptState(ExecutionJobVertex executionJobVertex, List operatorStates) {
List operatorIDs = executionJobVertex.getOperatorIDs();
//1. first compute the new parallelism
checkParallelismPreconditions(operatorStates, executionJobVertex);
int newParallelism = executionJobVertex.getParallelism();
List keyGroupPartitions = createKeyGroupPartitions(
executionJobVertex.getMaxParallelism(),
newParallelism);
//2. Redistribute the operator state.
/**
*
* Redistribute ManagedOperatorStates and RawOperatorStates from old parallelism to new parallelism.
*
* The old ManagedOperatorStates with old parallelism 3:
*
* parallelism0 parallelism1 parallelism2
* op0 states0,0 state0,1 state0,2
* op1
* op2 states2,0 state2,1 state1,2
* op3 states3,0 state3,1 state3,2
*
* The new ManagedOperatorStates with new parallelism 4:
*
* parallelism0 parallelism1 parallelism2 parallelism3
* op0 state0,0 state0,1 state0,2 state0,3
* op1
* op2 state2,0 state2,1 state2,2 state2,3
* op3 state3,0 state3,1 state3,2 state3,3
*/
List>> newManagedOperatorStates = new ArrayList<>();
List>> newRawOperatorStates = new ArrayList<>();
reDistributePartitionableStates(operatorStates, newParallelism, newManagedOperatorStates, newRawOperatorStates);
//3. Compute TaskStateHandles of every subTask in the executionJobVertex
/**
* An executionJobVertex's all state handles needed to restore are something like a matrix
*
* parallelism0 parallelism1 parallelism2 parallelism3
* op0 sh(0,0) sh(0,1) sh(0,2) sh(0,3)
* op1 sh(1,0) sh(1,1) sh(1,2) sh(1,3)
* op2 sh(2,0) sh(2,1) sh(2,2) sh(2,3)
* op3 sh(3,0) sh(3,1) sh(3,2) sh(3,3)
*
* we will compute the state handles column by column.
*
*/
for (int subTaskIndex = 0; subTaskIndex < newParallelism; subTaskIndex++) {
Execution currentExecutionAttempt = executionJobVertex.getTaskVertices()[subTaskIndex]
.getCurrentExecutionAttempt();
List subNonPartitionableState = new ArrayList<>();
Tuple2, Collection> subKeyedState = null;
List> subManagedOperatorState = new ArrayList<>();
List> subRawOperatorState = new ArrayList<>();
for (int operatorIndex = 0; operatorIndex < operatorIDs.size(); operatorIndex++) {
OperatorState operatorState = operatorStates.get(operatorIndex);
int oldParallelism = operatorState.getParallelism();
// NonPartitioned State
reAssignSubNonPartitionedStates(
operatorState,
subTaskIndex,
newParallelism,
oldParallelism,
subNonPartitionableState);
// PartitionedState
reAssignSubPartitionableState(newManagedOperatorStates,
newRawOperatorStates,
subTaskIndex,
operatorIndex,
subManagedOperatorState,
subRawOperatorState);
// KeyedState
if (operatorIndex == operatorIDs.size() - 1) {
subKeyedState = reAssignSubKeyedStates(operatorState,
keyGroupPartitions,
subTaskIndex,
newParallelism,
oldParallelism);
}
}
// check if a stateless task
if (!allElementsAreNull(subNonPartitionableState) ||
!allElementsAreNull(subManagedOperatorState) ||
!allElementsAreNull(subRawOperatorState) ||
subKeyedState != null) {
TaskStateHandles taskStateHandles = new TaskStateHandles(
new ChainedStateHandle<>(subNonPartitionableState),
subManagedOperatorState,
subRawOperatorState,
subKeyedState != null ? subKeyedState.f0 : null,
subKeyedState != null ? subKeyedState.f1 : null);
currentExecutionAttempt.setInitialState(taskStateHandles);
}
}
}
public void checkParallelismPreconditions(List operatorStates, ExecutionJobVertex executionJobVertex) {
for (OperatorState operatorState : operatorStates) {
checkParallelismPreconditions(operatorState, executionJobVertex);
}
}
private void reAssignSubPartitionableState(
List>> newMangedOperatorStates,
List>> newRawOperatorStates,
int subTaskIndex, int operatorIndex,
List> subManagedOperatorState,
List> subRawOperatorState) {
if (newMangedOperatorStates.get(operatorIndex) != null) {
subManagedOperatorState.add(newMangedOperatorStates.get(operatorIndex).get(subTaskIndex));
} else {
subManagedOperatorState.add(null);
}
if (newRawOperatorStates.get(operatorIndex) != null) {
subRawOperatorState.add(newRawOperatorStates.get(operatorIndex).get(subTaskIndex));
} else {
subRawOperatorState.add(null);
}
}
private Tuple2, Collection> reAssignSubKeyedStates(
OperatorState operatorState,
List keyGroupPartitions,
int subTaskIndex,
int newParallelism,
int oldParallelism) {
Collection subManagedKeyedState;
Collection subRawKeyedState;
if (newParallelism == oldParallelism) {
if (operatorState.getState(subTaskIndex) != null) {
KeyedStateHandle oldSubManagedKeyedState = operatorState.getState(subTaskIndex).getManagedKeyedState();
KeyedStateHandle oldSubRawKeyedState = operatorState.getState(subTaskIndex).getRawKeyedState();
subManagedKeyedState = oldSubManagedKeyedState != null ? Collections.singletonList(
oldSubManagedKeyedState) : null;
subRawKeyedState = oldSubRawKeyedState != null ? Collections.singletonList(
oldSubRawKeyedState) : null;
} else {
subManagedKeyedState = null;
subRawKeyedState = null;
}
} else {
subManagedKeyedState = getManagedKeyedStateHandles(operatorState, keyGroupPartitions.get(subTaskIndex));
subRawKeyedState = getRawKeyedStateHandles(operatorState, keyGroupPartitions.get(subTaskIndex));
}
if (subManagedKeyedState == null && subRawKeyedState == null) {
return null;
}
return new Tuple2<>(subManagedKeyedState, subRawKeyedState);
}
private boolean allElementsAreNull(List nonPartitionableStates) {
for (Object streamStateHandle : nonPartitionableStates) {
if (streamStateHandle != null) {
return false;
}
}
return true;
}
private void reAssignSubNonPartitionedStates(
OperatorState operatorState,
int subTaskIndex,
int newParallelism,
int oldParallelism,
List subNonPartitionableState) {
if (oldParallelism == newParallelism) {
if (operatorState.getState(subTaskIndex) != null) {
subNonPartitionableState.add(operatorState.getState(subTaskIndex).getLegacyOperatorState());
} else {
subNonPartitionableState.add(null);
}
} else {
subNonPartitionableState.add(null);
}
}
private void reDistributePartitionableStates(
List operatorStates, int newParallelism,
List>> newManagedOperatorStates,
List>> newRawOperatorStates) {
//collect the old partitionalbe state
List> oldManagedOperatorStates = new ArrayList<>();
List> oldRawOperatorStates = new ArrayList<>();
collectPartionableStates(operatorStates, oldManagedOperatorStates, oldRawOperatorStates);
//redistribute
OperatorStateRepartitioner opStateRepartitioner = RoundRobinOperatorStateRepartitioner.INSTANCE;
for (int operatorIndex = 0; operatorIndex < operatorStates.size(); operatorIndex++) {
int oldParallelism = operatorStates.get(operatorIndex).getParallelism();
newManagedOperatorStates.add(applyRepartitioner(opStateRepartitioner,
oldManagedOperatorStates.get(operatorIndex), oldParallelism, newParallelism));
newRawOperatorStates.add(applyRepartitioner(opStateRepartitioner,
oldRawOperatorStates.get(operatorIndex), oldParallelism, newParallelism));
}
}
private void collectPartionableStates(
List operatorStates,
List> managedOperatorStates,
List> rawOperatorStates) {
for (OperatorState operatorState : operatorStates) {
List managedOperatorState = null;
List rawOperatorState = null;
for (int i = 0; i < operatorState.getParallelism(); i++) {
OperatorSubtaskState operatorSubtaskState = operatorState.getState(i);
if (operatorSubtaskState != null) {
if (operatorSubtaskState.getManagedOperatorState() != null) {
if (managedOperatorState == null) {
managedOperatorState = new ArrayList<>();
}
managedOperatorState.add(operatorSubtaskState.getManagedOperatorState());
}
if (operatorSubtaskState.getRawOperatorState() != null) {
if (rawOperatorState == null) {
rawOperatorState = new ArrayList<>();
}
rawOperatorState.add(operatorSubtaskState.getRawOperatorState());
}
}
}
managedOperatorStates.add(managedOperatorState);
rawOperatorStates.add(rawOperatorState);
}
}
/**
* Collect {@link KeyGroupsStateHandle managedKeyedStateHandles} which have intersection with given
* {@link KeyGroupRange} from {@link TaskState operatorState}
*
* @param operatorState all state handles of a operator
* @param subtaskKeyGroupRange the KeyGroupRange of a subtask
* @return all managedKeyedStateHandles which have intersection with given KeyGroupRange
*/
public static List getManagedKeyedStateHandles(
OperatorState operatorState,
KeyGroupRange subtaskKeyGroupRange) {
List subtaskKeyedStateHandles = null;
for (int i = 0; i < operatorState.getParallelism(); i++) {
if (operatorState.getState(i) != null && operatorState.getState(i).getManagedKeyedState() != null) {
KeyedStateHandle intersectedKeyedStateHandle = operatorState.getState(i).getManagedKeyedState().getIntersection(subtaskKeyGroupRange);
if (intersectedKeyedStateHandle != null) {
if (subtaskKeyedStateHandles == null) {
subtaskKeyedStateHandles = new ArrayList<>();
}
subtaskKeyedStateHandles.add(intersectedKeyedStateHandle);
}
}
}
return subtaskKeyedStateHandles;
}
/**
* Collect {@link KeyGroupsStateHandle rawKeyedStateHandles} which have intersection with given
* {@link KeyGroupRange} from {@link TaskState operatorState}
*
* @param operatorState all state handles of a operator
* @param subtaskKeyGroupRange the KeyGroupRange of a subtask
* @return all rawKeyedStateHandles which have intersection with given KeyGroupRange
*/
public static List getRawKeyedStateHandles(
OperatorState operatorState,
KeyGroupRange subtaskKeyGroupRange) {
List subtaskKeyedStateHandles = null;
for (int i = 0; i < operatorState.getParallelism(); i++) {
if (operatorState.getState(i) != null && operatorState.getState(i).getRawKeyedState() != null) {
KeyedStateHandle intersectedKeyedStateHandle = operatorState.getState(i).getRawKeyedState().getIntersection(subtaskKeyGroupRange);
if (intersectedKeyedStateHandle != null) {
if (subtaskKeyedStateHandles == null) {
subtaskKeyedStateHandles = new ArrayList<>();
}
subtaskKeyedStateHandles.add(intersectedKeyedStateHandle);
}
}
}
return subtaskKeyedStateHandles;
}
/**
* Groups the available set of key groups into key group partitions. A key group partition is
* the set of key groups which is assigned to the same task. Each set of the returned list
* constitutes a key group partition.
*
* IMPORTANT: The assignment of key groups to partitions has to be in sync with the
* KeyGroupStreamPartitioner.
*
* @param numberKeyGroups Number of available key groups (indexed from 0 to numberKeyGroups - 1)
* @param parallelism Parallelism to generate the key group partitioning for
* @return List of key group partitions
*/
public static List createKeyGroupPartitions(int numberKeyGroups, int parallelism) {
Preconditions.checkArgument(numberKeyGroups >= parallelism);
List result = new ArrayList<>(parallelism);
for (int i = 0; i < parallelism; ++i) {
result.add(KeyGroupRangeAssignment.computeKeyGroupRangeForOperatorIndex(numberKeyGroups, parallelism, i));
}
return result;
}
/**
* Verifies conditions in regards to parallelism and maxParallelism that must be met when restoring state.
*
* @param operatorState state to restore
* @param executionJobVertex task for which the state should be restored
*/
private static void checkParallelismPreconditions(OperatorState operatorState, ExecutionJobVertex executionJobVertex) {
//----------------------------------------max parallelism preconditions-------------------------------------
if (operatorState.getMaxParallelism() < executionJobVertex.getParallelism()) {
throw new IllegalStateException("The state for task " + executionJobVertex.getJobVertexId() +
" can not be restored. The maximum parallelism (" + operatorState.getMaxParallelism() +
") of the restored state is lower than the configured parallelism (" + executionJobVertex.getParallelism() +
"). Please reduce the parallelism of the task to be lower or equal to the maximum parallelism."
);
}
// check that the number of key groups have not changed or if we need to override it to satisfy the restored state
if (operatorState.getMaxParallelism() != executionJobVertex.getMaxParallelism()) {
if (!executionJobVertex.isMaxParallelismConfigured()) {
// if the max parallelism was not explicitly specified by the user, we derive it from the state
LOG.debug("Overriding maximum parallelism for JobVertex {} from {} to {}",
executionJobVertex.getJobVertexId(), executionJobVertex.getMaxParallelism(), operatorState.getMaxParallelism());
executionJobVertex.setMaxParallelism(operatorState.getMaxParallelism());
} else {
// if the max parallelism was explicitly specified, we complain on mismatch
throw new IllegalStateException("The maximum parallelism (" +
operatorState.getMaxParallelism() + ") with which the latest " +
"checkpoint of the execution job vertex " + executionJobVertex +
" has been taken and the current maximum parallelism (" +
executionJobVertex.getMaxParallelism() + ") changed. This " +
"is currently not supported.");
}
}
//----------------------------------------parallelism preconditions-----------------------------------------
final int oldParallelism = operatorState.getParallelism();
final int newParallelism = executionJobVertex.getParallelism();
if (operatorState.hasNonPartitionedState() && (oldParallelism != newParallelism)) {
throw new IllegalStateException("Cannot restore the latest checkpoint because " +
"the operator " + executionJobVertex.getJobVertexId() + " has non-partitioned " +
"state and its parallelism changed. The operator " + executionJobVertex.getJobVertexId() +
" has parallelism " + newParallelism + " whereas the corresponding " +
"state object has a parallelism of " + oldParallelism);
}
}
/**
* Verifies that all operator states can be mapped to an execution job vertex.
*
* @param allowNonRestoredState if false an exception will be thrown if a state could not be mapped
* @param operatorStates operator states to map
* @param tasks task to map to
*/
private static void checkStateMappingCompleteness(
boolean allowNonRestoredState,
Map operatorStates,
Map tasks) {
Set allOperatorIDs = new HashSet<>();
for (ExecutionJobVertex executionJobVertex : tasks.values()) {
allOperatorIDs.addAll(executionJobVertex.getOperatorIDs());
}
for (Map.Entry operatorGroupStateEntry : operatorStates.entrySet()) {
OperatorState operatorState = operatorGroupStateEntry.getValue();
//----------------------------------------find operator for state---------------------------------------------
if (!allOperatorIDs.contains(operatorGroupStateEntry.getKey())) {
if (allowNonRestoredState) {
LOG.info("Skipped checkpoint state for operator {}.", operatorState.getOperatorID());
} else {
throw new IllegalStateException("There is no operator for the state " + operatorState.getOperatorID());
}
}
}
}
/**
* Repartitions the given operator state using the given {@link OperatorStateRepartitioner} with respect to the new
* parallelism.
*
* @param opStateRepartitioner partitioner to use
* @param chainOpParallelStates state to repartition
* @param oldParallelism parallelism with which the state is currently partitioned
* @param newParallelism parallelism with which the state should be partitioned
* @return repartitioned state
*/
public static List> applyRepartitioner(
OperatorStateRepartitioner opStateRepartitioner,
List chainOpParallelStates,
int oldParallelism,
int newParallelism) {
if (chainOpParallelStates == null) {
return null;
}
//We only redistribute if the parallelism of the operator changed from previous executions
if (newParallelism != oldParallelism) {
return opStateRepartitioner.repartitionState(
chainOpParallelStates,
newParallelism);
} else {
List> repackStream = new ArrayList<>(newParallelism);
for (OperatorStateHandle operatorStateHandle : chainOpParallelStates) {
Map partitionOffsets =
operatorStateHandle.getStateNameToPartitionOffsets();
for (OperatorStateHandle.StateMetaInfo metaInfo : partitionOffsets.values()) {
// if we find any broadcast state, we cannot take the shortcut and need to go through repartitioning
if (OperatorStateHandle.Mode.BROADCAST.equals(metaInfo.getDistributionMode())) {
return opStateRepartitioner.repartitionState(
chainOpParallelStates,
newParallelism);
}
}
repackStream.add(Collections.singletonList(operatorStateHandle));
}
return repackStream;
}
}
/**
* Determine the subset of {@link KeyGroupsStateHandle KeyGroupsStateHandles} with correct
* key group index for the given subtask {@link KeyGroupRange}.
*
*
This is publicly visible to be used in tests.
*/
public static List getKeyedStateHandles(
Collection extends KeyedStateHandle> keyedStateHandles,
KeyGroupRange subtaskKeyGroupRange) {
List subtaskKeyedStateHandles = new ArrayList<>();
for (KeyedStateHandle keyedStateHandle : keyedStateHandles) {
KeyedStateHandle intersectedKeyedStateHandle = keyedStateHandle.getIntersection(subtaskKeyGroupRange);
if (intersectedKeyedStateHandle != null) {
subtaskKeyedStateHandles.add(intersectedKeyedStateHandle);
}
}
return subtaskKeyedStateHandles;
}
}