All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.streaming.api.environment.StreamExecutionEnvironment Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.streaming.api.environment;

import com.esotericsoftware.kryo.Serializer;
import com.google.common.base.Preconditions;

import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.common.InvalidProgramException;
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.common.functions.InvalidTypesException;
import org.apache.flink.api.common.io.FileInputFormat;
import org.apache.flink.api.common.io.InputFormat;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.ClosureCleaner;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.io.PrimitiveInputFormat;
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.api.java.io.TextValueInputFormat;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.typeutils.MissingTypeInfo;
import org.apache.flink.api.java.typeutils.PojoTypeInfo;
import org.apache.flink.api.java.typeutils.ResultTypeQueryable;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.api.java.typeutils.ValueTypeInfo;
import org.apache.flink.client.program.Client;
import org.apache.flink.client.program.ContextEnvironment;
import org.apache.flink.client.program.OptimizerPlanEnvironment;
import org.apache.flink.client.program.PreviewPlanEnvironment;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.functions.source.FileMonitoringFunction;
import org.apache.flink.streaming.api.functions.source.FileMonitoringFunction.WatchType;
import org.apache.flink.streaming.api.functions.source.FileReadFunction;
import org.apache.flink.streaming.api.functions.source.FileSourceFunction;
import org.apache.flink.streaming.api.functions.source.FromElementsFunction;
import org.apache.flink.streaming.api.functions.source.FromIteratorFunction;
import org.apache.flink.streaming.api.functions.source.FromSplittableIteratorFunction;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.SocketTextStreamFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.source.StatefulSequenceSource;
import org.apache.flink.streaming.api.graph.StreamGraph;
import org.apache.flink.streaming.api.graph.StreamGraphGenerator;
import org.apache.flink.streaming.api.operators.StreamSource;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.streaming.api.transformations.StreamTransformation;
import org.apache.flink.types.StringValue;
import org.apache.flink.util.SplittableIterator;

import java.io.IOException;
import java.io.Serializable;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import static java.util.Objects.requireNonNull;

/**
 * An ExecutionEnvironment for streaming jobs. An instance of it is
 * necessary to construct streaming topologies.
 */
/**
 * The StreamExecutionEnvironment is the context in which a streaming program is executed. A
 * {@link LocalStreamEnvironment} will cause execution in the current JVM, a
 * {@link RemoteStreamEnvironment} will cause execution on a remote setup.
 * 
 * 

The environment provides methods to control the job execution (such as setting the parallelism * or the fault tolerance/checkpointing parameters) and to interact with the outside world (data access). * * @see org.apache.flink.streaming.api.environment.LocalStreamEnvironment * @see org.apache.flink.streaming.api.environment.RemoteStreamEnvironment */ public abstract class StreamExecutionEnvironment { /** The default name to use for a streaming job if no other name has been specified */ public static final String DEFAULT_JOB_NAME = "Flink Streaming Job"; /** The time characteristic that is used if none other is set */ private static final TimeCharacteristic DEFAULT_TIME_CHARACTERISTIC = TimeCharacteristic.ProcessingTime; /** The default buffer timeout (max delay of records in the network stack) */ private static final long DEFAULT_NETWORK_BUFFER_TIMEOUT = 100L; /** The environment of the context (local by default, cluster if invoked through command line) */ private static StreamExecutionEnvironmentFactory contextEnvironmentFactory; /** The default parallelism used when creating a local environment */ private static int defaultLocalParallelism = Runtime.getRuntime().availableProcessors(); // ------------------------------------------------------------------------ /** The execution configuration for this environment */ private final ExecutionConfig config = new ExecutionConfig(); protected final List> transformations = new ArrayList<>(); private long bufferTimeout = DEFAULT_NETWORK_BUFFER_TIMEOUT; protected boolean isChainingEnabled = true; protected long checkpointInterval = -1; // disabled protected CheckpointingMode checkpointingMode; protected boolean forceCheckpointing = false; /** The state backend used for storing k/v state and state snapshots */ private StateBackend defaultStateBackend; /** The time characteristic used by the data streams */ private TimeCharacteristic timeCharacteristic = DEFAULT_TIME_CHARACTERISTIC; // -------------------------------------------------------------------------------------------- // Constructor and Properties // -------------------------------------------------------------------------------------------- /** * Gets the config object. */ public ExecutionConfig getConfig() { return config; } /** * Sets the parallelism for operations executed through this environment. * Setting a parallelism of x here will cause all operators (such as map, * batchReduce) to run with x parallel instances. This method overrides the * default parallelism for this environment. The * {@link LocalStreamEnvironment} uses by default a value equal to the * number of hardware contexts (CPU cores / threads). When executing the * program via the command line client from a JAR file, the default degree * of parallelism is the one configured for that setup. * * @param parallelism The parallelism */ public StreamExecutionEnvironment setParallelism(int parallelism) { if (parallelism < 1) { throw new IllegalArgumentException("parallelism must be at least one."); } config.setParallelism(parallelism); return this; } /** * Gets the parallelism with which operation are executed by default. * Operations can individually override this value to use a specific * parallelism. * * @return The parallelism used by operations, unless they override that * value. */ public int getParallelism() { return config.getParallelism(); } /** * Sets the maximum time frequency (milliseconds) for the flushing of the * output buffers. By default the output buffers flush frequently to provide * low latency and to aid smooth developer experience. Setting the parameter * can result in three logical modes: *

*

    *
  • * A positive integer triggers flushing periodically by that integer
  • *
  • * 0 triggers flushing after every record thus minimizing latency
  • *
  • * -1 triggers flushing only when the output buffer is full thus maximizing * throughput
  • *
* * @param timeoutMillis * The maximum time between two output flushes. */ public StreamExecutionEnvironment setBufferTimeout(long timeoutMillis) { if (timeoutMillis < -1) { throw new IllegalArgumentException("Timeout of buffer must be non-negative or -1"); } this.bufferTimeout = timeoutMillis; return this; } /** * Sets the maximum time frequency (milliseconds) for the flushing of the * output buffers. For clarification on the extremal values see * {@link #setBufferTimeout(long)}. * * @return The timeout of the buffer. */ public long getBufferTimeout() { return this.bufferTimeout; } /** * Disables operator chaining for streaming operators. Operator chaining * allows non-shuffle operations to be co-located in the same thread fully * avoiding serialization and de-serialization. * * @return StreamExecutionEnvironment with chaining disabled. */ public StreamExecutionEnvironment disableOperatorChaining() { this.isChainingEnabled = false; return this; } /** * Returns whether operator chaining is enabled. * * @return {@code true} if chaining is enabled, false otherwise. */ public boolean isChainingEnabled() { return isChainingEnabled; } // ------------------------------------------------------------------------ // Checkpointing Settings // ------------------------------------------------------------------------ /** * Enables checkpointing for the streaming job. The distributed state of the streaming * dataflow will be periodically snapshotted. In case of a failure, the streaming * dataflow will be restarted from the latest completed checkpoint. This method selects * {@link CheckpointingMode#EXACTLY_ONCE} guarantees. * *

The job draws checkpoints periodically, in the given interval. The state will be * stored in the configured state backend.

* *

NOTE: Checkpointing iterative streaming dataflows in not properly supported at * the moment. For that reason, iterative jobs will not be started if used * with enabled checkpointing. To override this mechanism, use the * {@link #enableCheckpointing(long, CheckpointingMode, boolean)} method.

* * @param interval Time interval between state checkpoints in milliseconds. */ public StreamExecutionEnvironment enableCheckpointing(long interval) { return enableCheckpointing(interval, CheckpointingMode.EXACTLY_ONCE); } /** * Enables checkpointing for the streaming job. The distributed state of the streaming * dataflow will be periodically snapshotted. In case of a failure, the streaming * dataflow will be restarted from the latest completed checkpoint. * *

The job draws checkpoints periodically, in the given interval. The system uses the * given {@link CheckpointingMode} for the checkpointing ("exactly once" vs "at least once"). * The state will be stored in the configured state backend.

* *

NOTE: Checkpointing iterative streaming dataflows in not properly supported at * the moment. For that reason, iterative jobs will not be started if used * with enabled checkpointing. To override this mechanism, use the * {@link #enableCheckpointing(long, CheckpointingMode, boolean)} method.

* * @param interval * Time interval between state checkpoints in milliseconds. * @param mode * The checkpointing mode, selecting between "exactly once" and "at least once" guaranteed. */ public StreamExecutionEnvironment enableCheckpointing(long interval, CheckpointingMode mode) { if (mode == null) { throw new NullPointerException("checkpoint mode must not be null"); } if (interval <= 0) { throw new IllegalArgumentException("the checkpoint interval must be positive"); } this.checkpointInterval = interval; this.checkpointingMode = mode; return this; } /** * Enables checkpointing for the streaming job. The distributed state of the streaming * dataflow will be periodically snapshotted. In case of a failure, the streaming * dataflow will be restarted from the latest completed checkpoint. * *

The job draws checkpoints periodically, in the given interval. The state will be * stored in the configured state backend.

* *

NOTE: Checkpointing iterative streaming dataflows in not properly supported at * the moment. If the "force" parameter is set to true, the system will execute the * job nonetheless.

* * @param interval * Time interval between state checkpoints in millis. * @param mode * The checkpointing mode, selecting between "exactly once" and "at least once" guaranteed. * @param force * If true checkpointing will be enabled for iterative jobs as well. */ @Deprecated public StreamExecutionEnvironment enableCheckpointing(long interval, CheckpointingMode mode, boolean force) { this.enableCheckpointing(interval, mode); this.forceCheckpointing = force; return this; } /** * Enables checkpointing for the streaming job. The distributed state of the streaming * dataflow will be periodically snapshotted. In case of a failure, the streaming * dataflow will be restarted from the latest completed checkpoint. This method selects * {@link CheckpointingMode#EXACTLY_ONCE} guarantees. * *

The job draws checkpoints periodically, in the default interval. The state will be * stored in the configured state backend.

* *

NOTE: Checkpointing iterative streaming dataflows in not properly supported at * the moment. For that reason, iterative jobs will not be started if used * with enabled checkpointing. To override this mechanism, use the * {@link #enableCheckpointing(long, CheckpointingMode, boolean)} method.

*/ public StreamExecutionEnvironment enableCheckpointing() { enableCheckpointing(500, CheckpointingMode.EXACTLY_ONCE); return this; } /** * Returns the checkpointing interval or -1 if checkpointing is disabled. * * @return The checkpointing interval or -1 */ public long getCheckpointInterval() { return checkpointInterval; } /** * Returns whether checkpointing is force-enabled. */ public boolean isForceCheckpointing() { return forceCheckpointing; } /** * Returns the {@link CheckpointingMode}. */ public CheckpointingMode getCheckpointingMode() { return checkpointingMode; } /** * Sets the state backend that describes how to store and checkpoint operator state. It defines in * what form the key/value state ({@link org.apache.flink.api.common.state.OperatorState}, accessible * from operations on {@link org.apache.flink.streaming.api.datastream.KeyedStream}) is maintained * (heap, managed memory, externally), and where state snapshots/checkpoints are stored, both for * the key/value state, and for checkpointed functions (implementing the interface * {@link org.apache.flink.streaming.api.checkpoint.Checkpointed}). * *

The {@link org.apache.flink.runtime.state.memory.MemoryStateBackend} for example * maintains the state in heap memory, as objects. It is lightweight without extra dependencies, * but can checkpoint only small states (some counters). * *

In contrast, the {@link org.apache.flink.runtime.state.filesystem.FsStateBackend} * stores checkpoints of the state (also maintained as heap objects) in files. When using a replicated * file system (like HDFS, S3, MapR FS, Tachyon, etc) this will guarantee that state is not lost upon * failures of individual nodes and that streaming program can be executed highly available and strongly * consistent (assuming that Flink is run in high-availability mode). * * @return This StreamExecutionEnvironment itself, to allow chaining of function calls. * * @see #getStateBackend() */ public StreamExecutionEnvironment setStateBackend(StateBackend backend) { this.defaultStateBackend = requireNonNull(backend); return this; } /** * Returns the state backend that defines how to store and checkpoint state. * @return The state backend that defines how to store and checkpoint state. * * @see #setStateBackend(StateBackend) */ public StateBackend getStateBackend() { return defaultStateBackend; } /** * Sets the number of times that failed tasks are re-executed. A value of * zero effectively disables fault tolerance. A value of {@code -1} * indicates that the system default value (as defined in the configuration) * should be used. * * @param numberOfExecutionRetries * The number of times the system will try to re-execute failed tasks. */ public void setNumberOfExecutionRetries(int numberOfExecutionRetries) { config.setNumberOfExecutionRetries(numberOfExecutionRetries); } /** * Gets the number of times the system will try to re-execute failed tasks. * A value of {@code -1} indicates that the system default value (as defined * in the configuration) should be used. * * @return The number of times the system will try to re-execute failed tasks. */ public int getNumberOfExecutionRetries() { return config.getNumberOfExecutionRetries(); } /** * Sets the default parallelism that will be used for the local execution * environment created by {@link #createLocalEnvironment()}. * * @param parallelism * The parallelism to use as the default local parallelism. */ public static void setDefaultLocalParallelism(int parallelism) { defaultLocalParallelism = parallelism; } // -------------------------------------------------------------------------------------------- // Registry for types and serializers // -------------------------------------------------------------------------------------------- /** * Adds a new Kryo default serializer to the Runtime. *

* Note that the serializer instance must be serializable (as defined by * java.io.Serializable), because it may be distributed to the worker nodes * by java serialization. * * @param type * The class of the types serialized with the given serializer. * @param serializer * The serializer to use. */ public & Serializable>void addDefaultKryoSerializer(Class type, T serializer) { config.addDefaultKryoSerializer(type, serializer); } /** * Adds a new Kryo default serializer to the Runtime. * * @param type * The class of the types serialized with the given serializer. * @param serializerClass * The class of the serializer to use. */ public void addDefaultKryoSerializer(Class type, Class> serializerClass) { config.addDefaultKryoSerializer(type, serializerClass); } /** * Registers the given type with a Kryo Serializer. *

* Note that the serializer instance must be serializable (as defined by * java.io.Serializable), because it may be distributed to the worker nodes * by java serialization. * * @param type * The class of the types serialized with the given serializer. * @param serializer * The serializer to use. */ public & Serializable>void registerTypeWithKryoSerializer(Class type, T serializer) { config.registerTypeWithKryoSerializer(type, serializer); } /** * Registers the given Serializer via its class as a serializer for the * given type at the KryoSerializer * * @param type * The class of the types serialized with the given serializer. * @param serializerClass * The class of the serializer to use. */ public void registerTypeWithKryoSerializer(Class type, Class> serializerClass) { config.registerTypeWithKryoSerializer(type, serializerClass); } /** * Registers the given type with the serialization stack. If the type is * eventually serialized as a POJO, then the type is registered with the * POJO serializer. If the type ends up being serialized with Kryo, then it * will be registered at Kryo to make sure that only tags are written. * * @param type * The class of the type to register. */ public void registerType(Class type) { if (type == null) { throw new NullPointerException("Cannot register null type class."); } TypeInformation typeInfo = TypeExtractor.createTypeInfo(type); if (typeInfo instanceof PojoTypeInfo) { config.registerPojoType(type); } else { config.registerKryoType(type); } } // -------------------------------------------------------------------------------------------- // Time characteristic // -------------------------------------------------------------------------------------------- /** * Sets the time characteristic for all streams create from this environment, e.g., processing * time, event time, or ingestion time. * *

* If you set the characteristic to IngestionTime of EventTime this will set a default * watermark update interval of 200 ms. If this is not applicable for your application * you should change it using {@link ExecutionConfig#setAutoWatermarkInterval(long)}. * * @param characteristic The time characteristic. */ public void setStreamTimeCharacteristic(TimeCharacteristic characteristic) { this.timeCharacteristic = requireNonNull(characteristic); if (characteristic == TimeCharacteristic.ProcessingTime) { getConfig().disableTimestamps(); getConfig().setAutoWatermarkInterval(0); } else { getConfig().enableTimestamps(); getConfig().setAutoWatermarkInterval(200); } } /** * Gets the time characteristic. * * @see #setStreamTimeCharacteristic(org.apache.flink.streaming.api.TimeCharacteristic) * * @return The time characteristic. */ public TimeCharacteristic getStreamTimeCharacteristic() { return timeCharacteristic; } // -------------------------------------------------------------------------------------------- // Data stream creations // -------------------------------------------------------------------------------------------- /** * Creates a new data stream that contains a sequence of numbers. This is a parallel source, * if you manually set the parallelism to {@code 1} * (using {@link org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator#setParallelism(int)}) * the generated sequence of elements is in order. * * @param from * The number to start at (inclusive) * @param to * The number to stop at (inclusive) * @return A data stream, containing all number in the [from, to] interval */ public DataStreamSource generateSequence(long from, long to) { if (from > to) { throw new IllegalArgumentException("Start of sequence must not be greater than the end"); } return addSource(new StatefulSequenceSource(from, to), "Sequence Source"); } /** * Creates a new data stream that contains the given elements. The elements must all be of the same type, for * example, all of the {@link String} or {@link Integer}. *

* The framework will try and determine the exact type from the elements. In case of generic elements, it may be * necessary to manually supply the type information via {@link #fromCollection(java.util.Collection, * org.apache.flink.api.common.typeinfo.TypeInformation)}. *

* Note that this operation will result in a non-parallel data stream source, i.e. a data stream source with a * degree of parallelism one. * * @param data * The array of elements to create the data stream from. * @param * The type of the returned data stream * @return The data stream representing the given array of elements */ @SafeVarargs public final DataStreamSource fromElements(OUT... data) { if (data.length == 0) { throw new IllegalArgumentException("fromElements needs at least one element as argument"); } TypeInformation typeInfo; try { typeInfo = TypeExtractor.getForObject(data[0]); } catch (Exception e) { throw new RuntimeException("Could not create TypeInformation for type " + data[0].getClass().getName() + "; please specify the TypeInformation manually via " + "StreamExecutionEnvironment#fromElements(Collection, TypeInformation)"); } return fromCollection(Arrays.asList(data), typeInfo); } /** * Creates a data stream from the given non-empty collection. The type of the data stream is that of the * elements in the collection. * *

The framework will try and determine the exact type from the collection elements. In case of generic * elements, it may be necessary to manually supply the type information via * {@link #fromCollection(java.util.Collection, org.apache.flink.api.common.typeinfo.TypeInformation)}.

* *

Note that this operation will result in a non-parallel data stream source, i.e. a data stream source with a * parallelism one.

* * @param data * The collection of elements to create the data stream from. * @param * The generic type of the returned data stream. * @return * The data stream representing the given collection */ public DataStreamSource fromCollection(Collection data) { Preconditions.checkNotNull(data, "Collection must not be null"); if (data.isEmpty()) { throw new IllegalArgumentException("Collection must not be empty"); } OUT first = data.iterator().next(); if (first == null) { throw new IllegalArgumentException("Collection must not contain null elements"); } TypeInformation typeInfo; try { typeInfo = TypeExtractor.getForObject(first); } catch (Exception e) { throw new RuntimeException("Could not create TypeInformation for type " + first.getClass() + "; please specify the TypeInformation manually via " + "StreamExecutionEnvironment#fromElements(Collection, TypeInformation)"); } return fromCollection(data, typeInfo); } /** * Creates a data stream from the given non-empty collection. * *

Note that this operation will result in a non-parallel data stream source, * i.e., a data stream source with a parallelism one.

* * @param data * The collection of elements to create the data stream from * @param typeInfo * The TypeInformation for the produced data stream * @param * The type of the returned data stream * @return The data stream representing the given collection */ public DataStreamSource fromCollection(Collection data, TypeInformation typeInfo) { Preconditions.checkNotNull(data, "Collection must not be null"); // must not have null elements and mixed elements FromElementsFunction.checkCollection(data, typeInfo.getTypeClass()); SourceFunction function; try { function = new FromElementsFunction(typeInfo.createSerializer(getConfig()), data); } catch (IOException e) { throw new RuntimeException(e.getMessage(), e); } return addSource(function, "Collection Source", typeInfo).setParallelism(1); } /** * Creates a data stream from the given iterator. * *

Because the iterator will remain unmodified until the actual execution happens, * the type of data returned by the iterator must be given explicitly in the form of the type * class (this is due to the fact that the Java compiler erases the generic type information).

* *

Note that this operation will result in a non-parallel data stream source, i.e., * a data stream source with a parallelism of one.

* * @param data * The iterator of elements to create the data stream from * @param type * The class of the data produced by the iterator. Must not be a generic class. * @param * The type of the returned data stream * @return The data stream representing the elements in the iterator * @see #fromCollection(java.util.Iterator, org.apache.flink.api.common.typeinfo.TypeInformation) */ public DataStreamSource fromCollection(Iterator data, Class type) { return fromCollection(data, TypeExtractor.getForClass(type)); } /** * Creates a data stream from the given iterator. * *

Because the iterator will remain unmodified until the actual execution happens, * the type of data returned by the iterator must be given explicitly in the form of the type * information. This method is useful for cases where the type is generic. * In that case, the type class (as given in * {@link #fromCollection(java.util.Iterator, Class)} does not supply all type information.

* *

Note that this operation will result in a non-parallel data stream source, i.e., * a data stream source with a parallelism one.

* * @param data * The iterator of elements to create the data stream from * @param typeInfo * The TypeInformation for the produced data stream * @param * The type of the returned data stream * @return The data stream representing the elements in the iterator */ public DataStreamSource fromCollection(Iterator data, TypeInformation typeInfo) { Preconditions.checkNotNull(data, "The iterator must not be null"); SourceFunction function = new FromIteratorFunction(data); return addSource(function, "Collection Source", typeInfo); } /** * Creates a new data stream that contains elements in the iterator. The iterator is splittable, allowing the * framework to create a parallel data stream source that returns the elements in the iterator. * *

Because the iterator will remain unmodified until the actual execution happens, the type of data returned by the * iterator must be given explicitly in the form of the type class (this is due to the fact that the Java compiler * erases the generic type information).

* * @param iterator * The iterator that produces the elements of the data stream * @param type * The class of the data produced by the iterator. Must not be a generic class. * @param * The type of the returned data stream * @return A data stream representing the elements in the iterator */ public DataStreamSource fromParallelCollection(SplittableIterator iterator, Class type) { return fromParallelCollection(iterator, TypeExtractor.getForClass(type)); } /** * Creates a new data stream that contains elements in the iterator. The iterator is splittable, allowing the * framework to create a parallel data stream source that returns the elements in the iterator. *

* Because the iterator will remain unmodified until the actual execution happens, the type of data returned by the * iterator must be given explicitly in the form of the type information. This method is useful for cases where the * type is generic. In that case, the type class (as given in {@link #fromParallelCollection(org.apache.flink.util.SplittableIterator, * Class)} does not supply all type information. * * @param iterator * The iterator that produces the elements of the data stream * @param typeInfo * The TypeInformation for the produced data stream. * @param * The type of the returned data stream * @return A data stream representing the elements in the iterator */ public DataStreamSource fromParallelCollection(SplittableIterator iterator, TypeInformation typeInfo) { return fromParallelCollection(iterator, typeInfo, "Parallel Collection Source"); } // private helper for passing different names private DataStreamSource fromParallelCollection(SplittableIterator iterator, TypeInformation typeInfo, String operatorName) { return addSource(new FromSplittableIteratorFunction(iterator), operatorName).returns(typeInfo); } /** * Creates a data stream that represents the Strings produced by reading the given file line wise. The file will be * read with the system's default character set. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path"). * @return The data stream that represents the data read from the given file as text lines */ public DataStreamSource readTextFile(String filePath) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextInputFormat format = new TextInputFormat(new Path(filePath)); TypeInformation typeInfo = BasicTypeInfo.STRING_TYPE_INFO; return createInput(format, typeInfo, "Read Text File Source"); } /** * Creates a data stream that represents the Strings produced by reading the given file line wise. The {@link * java.nio.charset.Charset} with the given name will be used to read the files. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @param charsetName * The name of the character set used to read the file * @return The data stream that represents the data read from the given file as text lines */ public DataStreamSource readTextFile(String filePath, String charsetName) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextInputFormat format = new TextInputFormat(new Path(filePath)); TypeInformation typeInfo = BasicTypeInfo.STRING_TYPE_INFO; format.setCharsetName(charsetName); return createInput(format, typeInfo, "Read Text File Source"); } /** * Creates a data stream that represents the strings produced by reading the given file line wise. This method is * similar to {@link #readTextFile(String)}, but it produces a data stream with mutable {@link org.apache.flink.types.StringValue} * objects, * rather than Java Strings. StringValues can be used to tune implementations to be less object and garbage * collection heavy. *

* The file will be read with the system's default character set. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @return A data stream that represents the data read from the given file as text lines */ public DataStreamSource readTextFileWithValue(String filePath) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextValueInputFormat format = new TextValueInputFormat(new Path(filePath)); TypeInformation typeInfo = new ValueTypeInfo(StringValue.class); return createInput(format, typeInfo, "Read Text File with Value " + "source"); } /** * Creates a data stream that represents the Strings produced by reading the given file line wise. This method is * similar to {@link #readTextFile(String, String)}, but it produces a data stream with mutable {@link org.apache.flink.types.StringValue} * objects, rather than Java Strings. StringValues can be used to tune implementations to be less object and * garbage * collection heavy. *

* The {@link java.nio.charset.Charset} with the given name will be used to read the files. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @param charsetName * The name of the character set used to read the file * @param skipInvalidLines * A flag to indicate whether to skip lines that cannot be read with the given character set * @return A data stream that represents the data read from the given file as text lines */ public DataStreamSource readTextFileWithValue(String filePath, String charsetName, boolean skipInvalidLines) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextValueInputFormat format = new TextValueInputFormat(new Path(filePath)); TypeInformation typeInfo = new ValueTypeInfo(StringValue.class); format.setCharsetName(charsetName); format.setSkipInvalidLines(skipInvalidLines); return createInput(format, typeInfo, "Read Text File with Value " + "source"); } /** * Reads the given file with the given imput format. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @param inputFormat * The input format used to create the data stream * @param * The type of the returned data stream * @return The data stream that represents the data read from the given file */ public DataStreamSource readFile(FileInputFormat inputFormat, String filePath) { Preconditions.checkNotNull(inputFormat, "InputFormat must not be null."); Preconditions.checkNotNull(filePath, "The file path must not be null."); inputFormat.setFilePath(new Path(filePath)); try { return createInput(inputFormat, TypeExtractor.getInputFormatTypes(inputFormat), "Read File source"); } catch (Exception e) { throw new InvalidProgramException("The type returned by the input format could not be automatically " + "determined. " + "Please specify the TypeInformation of the produced type explicitly by using the " + "'createInput(InputFormat, TypeInformation)' method instead."); } } /** * Creates a data stream that represents the primitive type produced by reading the given file line wise. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @param typeClass * The primitive type class to be read * @param * The type of the returned data stream * @return A data stream that represents the data read from the given file as primitive type */ public DataStreamSource readFileOfPrimitives(String filePath, Class typeClass) { Preconditions.checkNotNull(filePath, "The file path may not be null."); PrimitiveInputFormat inputFormat = new PrimitiveInputFormat(new Path(filePath), typeClass); TypeInformation typeInfo = TypeExtractor.getForClass(typeClass); return createInput(inputFormat, typeInfo, "Read File of Primitives source"); } /** * Creates a data stream that represents the primitive type produced by reading the given file in delimited way. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path") * @param delimiter * The delimiter of the given file * @param typeClass * The primitive type class to be read * @param * The type of the returned data stream * @return A data stream that represents the data read from the given file as primitive type. */ public DataStreamSource readFileOfPrimitives(String filePath, String delimiter, Class typeClass) { Preconditions.checkNotNull(filePath, "The file path may not be null."); PrimitiveInputFormat inputFormat = new PrimitiveInputFormat(new Path(filePath), delimiter, typeClass); TypeInformation typeInfo = TypeExtractor.getForClass(typeClass); return createInput(inputFormat, typeInfo, "Read File of Primitives source"); } /** * Creates a data stream that contains the contents of file created while system watches the given path. The file * will be read with the system's default character set. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or "hdfs://host:port/file/path/") * @param intervalMillis * The interval of file watching in milliseconds * @param watchType * The watch type of file stream. When watchType is {@link org.apache.flink.streaming.api.functions.source.FileMonitoringFunction.WatchType#ONLY_NEW_FILES}, the system processes * only * new files. {@link org.apache.flink.streaming.api.functions.source.FileMonitoringFunction.WatchType#REPROCESS_WITH_APPENDED} means that the system re-processes all contents of * appended file. {@link org.apache.flink.streaming.api.functions.source.FileMonitoringFunction.WatchType#PROCESS_ONLY_APPENDED} means that the system processes only appended * contents * of files. * @return The DataStream containing the given directory. */ public DataStream readFileStream(String filePath, long intervalMillis, WatchType watchType) { DataStream> source = addSource(new FileMonitoringFunction( filePath, intervalMillis, watchType), "Read File Stream source"); return source.flatMap(new FileReadFunction()); } /** * Creates a new data stream that contains the strings received infinitely from a socket. Received strings are * decoded by the system's default character set. On the termination of the socket server connection retries can be * initiated. *

* Let us note that the socket itself does not report on abort and as a consequence retries are only initiated when * the socket was gracefully terminated. * * @param hostname * The host name which a server socket binds * @param port * The port number which a server socket binds. A port number of 0 means that the port number is automatically * allocated. * @param delimiter * A character which splits received strings into records * @param maxRetry * The maximal retry interval in seconds while the program waits for a socket that is temporarily down. * Reconnection is initiated every second. A number of 0 means that the reader is immediately terminated, * while * a negative value ensures retrying forever. * @return A data stream containing the strings received from the socket */ public DataStreamSource socketTextStream(String hostname, int port, char delimiter, long maxRetry) { return addSource(new SocketTextStreamFunction(hostname, port, delimiter, maxRetry), "Socket Stream"); } /** * Creates a new data stream that contains the strings received infinitely from a socket. Received strings are * decoded by the system's default character set. The reader is terminated immediately when the socket is down. * * @param hostname * The host name which a server socket binds * @param port * The port number which a server socket binds. A port number of 0 means that the port number is automatically * allocated. * @param delimiter * A character which splits received strings into records * @return A data stream containing the strings received from the socket */ public DataStreamSource socketTextStream(String hostname, int port, char delimiter) { return socketTextStream(hostname, port, delimiter, 0); } /** * Creates a new data stream that contains the strings received infinitely from a socket. Received strings are * decoded by the system's default character set, using'\n' as delimiter. The reader is terminated immediately when * the socket is down. * * @param hostname * The host name which a server socket binds * @param port * The port number which a server socket binds. A port number of 0 means that the port number is automatically * allocated. * @return A data stream containing the strings received from the socket */ public DataStreamSource socketTextStream(String hostname, int port) { return socketTextStream(hostname, port, '\n'); } /** * Generic method to create an input data stream with {@link org.apache.flink.api.common.io.InputFormat}. *

* Since all data streams need specific information about their types, this method needs to determine the type of * the data produced by the input format. It will attempt to determine the data type by reflection, unless the * input * format implements the {@link org.apache.flink.api.java.typeutils.ResultTypeQueryable} interface. In the latter * case, this method will invoke the {@link org.apache.flink.api.java.typeutils.ResultTypeQueryable#getProducedType()} * method to determine data type produced by the input format. * * @param inputFormat * The input format used to create the data stream * @param * The type of the returned data stream * @return The data stream that represents the data created by the input format */ public DataStreamSource createInput(InputFormat inputFormat) { return createInput(inputFormat, TypeExtractor.getInputFormatTypes(inputFormat), "Custom File source"); } /** * Generic method to create an input data stream with {@link org.apache.flink.api.common.io.InputFormat}. *

* The data stream is typed to the given TypeInformation. This method is intended for input formats where the * return * type cannot be determined by reflection analysis, and that do not implement the * {@link org.apache.flink.api.java.typeutils.ResultTypeQueryable} interface. * * @param inputFormat * The input format used to create the data stream * @param * The type of the returned data stream * @return The data stream that represents the data created by the input format */ public DataStreamSource createInput(InputFormat inputFormat, TypeInformation typeInfo) { return createInput(inputFormat, typeInfo, "Custom File source"); } // private helper for passing different names private DataStreamSource createInput(InputFormat inputFormat, TypeInformation typeInfo, String sourceName) { FileSourceFunction function = new FileSourceFunction(inputFormat, typeInfo); return addSource(function, sourceName).returns(typeInfo); } /** * Adds a Data Source to the streaming topology. * *

* By default sources have a parallelism of 1. To enable parallel execution, the user defined source should * implement {@link org.apache.flink.streaming.api.functions.source.ParallelSourceFunction} or extend {@link * org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction}. In these cases the resulting source * will have the parallelism of the environment. To change this afterwards call {@link * org.apache.flink.streaming.api.datastream.DataStreamSource#setParallelism(int)} * * @param function * the user defined function * @param * type of the returned stream * @return the data stream constructed */ public DataStreamSource addSource(SourceFunction function) { return addSource(function, "Custom Source"); } /** * Ads a data source with a custom type information thus opening a * {@link DataStream}. Only in very special cases does the user need to * support type information. Otherwise use * {@link #addSource(org.apache.flink.streaming.api.functions.source.SourceFunction)} * * @param function * the user defined function * @param sourceName * Name of the data source * @param * type of the returned stream * @return the data stream constructed */ public DataStreamSource addSource(SourceFunction function, String sourceName) { return addSource(function, sourceName, null); } /** * Ads a data source with a custom type information thus opening a * {@link DataStream}. Only in very special cases does the user need to * support type information. Otherwise use * {@link #addSource(org.apache.flink.streaming.api.functions.source.SourceFunction)} * * @param function * the user defined function * @param * type of the returned stream * @param typeInfo * the user defined type information for the stream * @return the data stream constructed */ public DataStreamSource addSource(SourceFunction function, TypeInformation typeInfo) { return addSource(function, "Custom Source", typeInfo); } /** * Ads a data source with a custom type information thus opening a * {@link DataStream}. Only in very special cases does the user need to * support type information. Otherwise use * {@link #addSource(org.apache.flink.streaming.api.functions.source.SourceFunction)} * * @param function * the user defined function * @param sourceName * Name of the data source * @param * type of the returned stream * @param typeInfo * the user defined type information for the stream * @return the data stream constructed */ @SuppressWarnings("unchecked") public DataStreamSource addSource(SourceFunction function, String sourceName, TypeInformation typeInfo) { if(typeInfo == null) { if (function instanceof ResultTypeQueryable) { typeInfo = ((ResultTypeQueryable) function).getProducedType(); } else { try { typeInfo = TypeExtractor.createTypeInfo( SourceFunction.class, function.getClass(), 0, null, null); } catch (final InvalidTypesException e) { typeInfo = (TypeInformation) new MissingTypeInfo(sourceName, e); } } } boolean isParallel = function instanceof ParallelSourceFunction; clean(function); StreamSource sourceOperator = new StreamSource(function); return new DataStreamSource(this, typeInfo, sourceOperator, isParallel, sourceName); } /** * Triggers the program execution. The environment will execute all parts of * the program that have resulted in a "sink" operation. Sink operations are * for example printing results or forwarding them to a message queue. *

* The program execution will be logged and displayed with a generated * default name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception which occurs during job execution. */ public JobExecutionResult execute() throws Exception { return execute(DEFAULT_JOB_NAME); } /** * Triggers the program execution. The environment will execute all parts of * the program that have resulted in a "sink" operation. Sink operations are * for example printing results or forwarding them to a message queue. *

* The program execution will be logged and displayed with the provided name * * @param jobName * Desired name of the job * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception which occurs during job execution. */ public abstract JobExecutionResult execute(String jobName) throws Exception; /** * Getter of the {@link org.apache.flink.streaming.api.graph.StreamGraph} of the streaming job. * * @return The streamgraph representing the transformations */ public StreamGraph getStreamGraph() { if (transformations.size() <= 0) { throw new IllegalStateException("No operators defined in streaming topology. Cannot execute."); } return StreamGraphGenerator.generate(this, transformations); } /** * Creates the plan with which the system will execute the program, and * returns it as a String using a JSON representation of the execution data * flow graph. Note that this needs to be called, before the plan is * executed. * * @return The execution plan of the program, as a JSON String. */ public String getExecutionPlan() { return getStreamGraph().getStreamingPlanAsJSON(); } /** * Returns a "closure-cleaned" version of the given function. Cleans only if closure cleaning * is not disabled in the {@link org.apache.flink.api.common.ExecutionConfig} */ public F clean(F f) { if (getConfig().isClosureCleanerEnabled()) { ClosureCleaner.clean(f, true); } ClosureCleaner.ensureSerializable(f); return f; } /** * Adds an operator to the list of operators that should be executed when calling * {@link #execute}. * *

* When calling {@link #execute()} only the operators that where previously added to the list * are executed. * *

* This is not meant to be used by users. The API methods that create operators must call * this method. */ public void addOperator(StreamTransformation transformation) { Preconditions.checkNotNull(transformation, "transformation must not be null."); this.transformations.add(transformation); } // -------------------------------------------------------------------------------------------- // Factory methods for ExecutionEnvironments // -------------------------------------------------------------------------------------------- /** * Creates an execution environment that represents the context in which the * program is currently executed. If the program is invoked standalone, this * method returns a local execution environment, as returned by * {@link #createLocalEnvironment()}. * * @return The execution environment of the context in which the program is * executed. */ public static StreamExecutionEnvironment getExecutionEnvironment() { if (contextEnvironmentFactory != null) { return contextEnvironmentFactory.createExecutionEnvironment(); } // because the streaming project depends on "flink-clients" (and not the other way around) // we currently need to intercept the data set environment and create a dependent stream env. // this should be fixed once we rework the project dependencies ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (env instanceof ContextEnvironment) { ContextEnvironment ctx = (ContextEnvironment) env; return createContextEnvironment(ctx.getClient(), ctx.getJars(), ctx.getClasspaths(), ctx.getParallelism(), ctx.isWait()); } else if (env instanceof OptimizerPlanEnvironment | env instanceof PreviewPlanEnvironment) { return new StreamPlanEnvironment(env); } else { return createLocalEnvironment(); } } private static StreamExecutionEnvironment createContextEnvironment( Client client, List jars, List classpaths, int parallelism, boolean wait) { return new StreamContextEnvironment(client, jars, classpaths, parallelism, wait); } /** * Creates a {@link LocalStreamEnvironment}. The local execution environment * will run the program in a multi-threaded fashion in the same JVM as the * environment was created in. The default parallelism of the local * environment is the number of hardware contexts (CPU cores / threads), * unless it was specified differently by {@link #setParallelism(int)}. * * @return A local execution environment. */ public static LocalStreamEnvironment createLocalEnvironment() { return createLocalEnvironment(defaultLocalParallelism); } /** * Creates a {@link LocalStreamEnvironment}. The local execution environment * will run the program in a multi-threaded fashion in the same JVM as the * environment was created in. It will use the parallelism specified in the * parameter. * * @param parallelism * The parallelism for the local environment. * @return A local execution environment with the specified parallelism. */ public static LocalStreamEnvironment createLocalEnvironment(int parallelism) { LocalStreamEnvironment env = new LocalStreamEnvironment(); env.setParallelism(parallelism); return env; } /** * Creates a {@link LocalStreamEnvironment}. The local execution environment * will run the program in a multi-threaded fashion in the same JVM as the * environment was created in. It will use the parallelism specified in the * parameter. * * @param parallelism * The parallelism for the local environment. * @param configuration * Pass a custom configuration into the cluster * @return A local execution environment with the specified parallelism. */ public static LocalStreamEnvironment createLocalEnvironment(int parallelism, Configuration configuration) { LocalStreamEnvironment currentEnvironment = new LocalStreamEnvironment(configuration); currentEnvironment.setParallelism(parallelism); return currentEnvironment; } /** * Creates a {@link RemoteStreamEnvironment}. The remote environment sends * (parts of) the program to a cluster for execution. Note that all file * paths used in the program must be accessible from the cluster. The * execution will use no parallelism, unless the parallelism is set * explicitly via {@link #setParallelism}. * * @param host * The host name or address of the master (JobManager), where the * program should be executed. * @param port * The port of the master (JobManager), where the program should * be executed. * @param jarFiles * The JAR files with code that needs to be shipped to the * cluster. If the program uses user-defined functions, * user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static StreamExecutionEnvironment createRemoteEnvironment( String host, int port, String... jarFiles) { return new RemoteStreamEnvironment(host, port, jarFiles); } /** * Creates a {@link RemoteStreamEnvironment}. The remote environment sends * (parts of) the program to a cluster for execution. Note that all file * paths used in the program must be accessible from the cluster. The * execution will use the specified parallelism. * * @param host * The host name or address of the master (JobManager), where the * program should be executed. * @param port * The port of the master (JobManager), where the program should * be executed. * @param parallelism * The parallelism to use during the execution. * @param jarFiles * The JAR files with code that needs to be shipped to the * cluster. If the program uses user-defined functions, * user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static StreamExecutionEnvironment createRemoteEnvironment( String host, int port, int parallelism, String... jarFiles) { RemoteStreamEnvironment env = new RemoteStreamEnvironment(host, port, jarFiles); env.setParallelism(parallelism); return env; } /** * Creates a {@link RemoteStreamEnvironment}. The remote environment sends * (parts of) the program to a cluster for execution. Note that all file * paths used in the program must be accessible from the cluster. The * execution will use the specified parallelism. * * @param host * The host name or address of the master (JobManager), where the * program should be executed. * @param port * The port of the master (JobManager), where the program should * be executed. * @param clientConfig * The configuration used by the client that connects to the remote cluster. * @param jarFiles * The JAR files with code that needs to be shipped to the * cluster. If the program uses user-defined functions, * user-defined input formats, or any libraries, those must be * provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static StreamExecutionEnvironment createRemoteEnvironment( String host, int port, Configuration clientConfig, String... jarFiles) { return new RemoteStreamEnvironment(host, port, clientConfig, jarFiles); } // -------------------------------------------------------------------------------------------- // Methods to control the context and local environments for execution from packaged programs // -------------------------------------------------------------------------------------------- protected static void initializeContextEnvironment(StreamExecutionEnvironmentFactory ctx) { contextEnvironmentFactory = ctx; } protected static void resetContextEnvironment() { contextEnvironmentFactory = null; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy