All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.flink.streaming.api.datastream.WindowedStream Maven / Gradle / Ivy

There is a newer version: 1.14.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.streaming.api.datastream;

import org.apache.flink.annotation.Internal;
import org.apache.flink.annotation.Public;
import org.apache.flink.annotation.PublicEvolving;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.Function;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.functions.RichFunction;
import org.apache.flink.api.common.state.AggregatingStateDescriptor;
import org.apache.flink.api.common.state.FoldingStateDescriptor;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.state.ReducingStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeutils.TypeSerializer;
import org.apache.flink.api.java.Utils;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.aggregation.AggregationFunction;
import org.apache.flink.streaming.api.functions.aggregation.ComparableAggregator;
import org.apache.flink.streaming.api.functions.aggregation.SumAggregator;
import org.apache.flink.streaming.api.functions.windowing.AggregateApplyWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.FoldApplyProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.FoldApplyWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.PassThroughWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.ReduceApplyProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.ReduceApplyWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.windowing.assigners.BaseAlignedWindowAssigner;
import org.apache.flink.streaming.api.windowing.assigners.MergingWindowAssigner;
import org.apache.flink.streaming.api.windowing.assigners.WindowAssigner;
import org.apache.flink.streaming.api.windowing.evictors.Evictor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.triggers.Trigger;
import org.apache.flink.streaming.api.windowing.windows.Window;
import org.apache.flink.streaming.runtime.operators.windowing.EvictingWindowOperator;
import org.apache.flink.streaming.runtime.operators.windowing.WindowOperator;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalAggregateProcessWindowFunction;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalIterableProcessWindowFunction;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalIterableWindowFunction;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalSingleValueProcessWindowFunction;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalSingleValueWindowFunction;
import org.apache.flink.streaming.runtime.operators.windowing.functions.InternalWindowFunction;
import org.apache.flink.streaming.runtime.streamrecord.StreamElementSerializer;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.util.OutputTag;
import org.apache.flink.util.Preconditions;

import javax.annotation.Nullable;

import java.lang.reflect.Type;

import static org.apache.flink.util.Preconditions.checkArgument;
import static org.apache.flink.util.Preconditions.checkNotNull;

/**
 * A {@code WindowedStream} represents a data stream where elements are grouped by
 * key, and for each key, the stream of elements is split into windows based on a
 * {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner}. Window emission
 * is triggered based on a {@link org.apache.flink.streaming.api.windowing.triggers.Trigger}.
 *
 * 

The windows are conceptually evaluated for each key individually, meaning windows can trigger * at different points for each key. * *

If an {@link Evictor} is specified it will be used to evict elements from the window after * evaluation was triggered by the {@code Trigger} but before the actual evaluation of the window. * When using an evictor window performance will degrade significantly, since * incremental aggregation of window results cannot be used. * *

Note that the {@code WindowedStream} is purely and API construct, during runtime the * {@code WindowedStream} will be collapsed together with the {@code KeyedStream} and the operation * over the window into one single operation. * * @param The type of elements in the stream. * @param The type of the key by which elements are grouped. * @param The type of {@code Window} that the {@code WindowAssigner} assigns the elements to. */ @Public public class WindowedStream { /** The keyed data stream that is windowed by this stream. */ private final KeyedStream input; /** The window assigner. */ private final WindowAssigner windowAssigner; /** The trigger that is used for window evaluation/emission. */ private Trigger trigger; /** The evictor that is used for evicting elements before window evaluation. */ private Evictor evictor; /** The user-specified allowed lateness. */ private long allowedLateness = 0L; /** * Side output {@code OutputTag} for late data. If no tag is set late data will simply be * dropped. */ private OutputTag lateDataOutputTag; @PublicEvolving public WindowedStream(KeyedStream input, WindowAssigner windowAssigner) { this.input = input; this.windowAssigner = windowAssigner; this.trigger = windowAssigner.getDefaultTrigger(input.getExecutionEnvironment()); } /** * Sets the {@code Trigger} that should be used to trigger window emission. */ @PublicEvolving public WindowedStream trigger(Trigger trigger) { if (windowAssigner instanceof MergingWindowAssigner && !trigger.canMerge()) { throw new UnsupportedOperationException("A merging window assigner cannot be used with a trigger that does not support merging."); } if (windowAssigner instanceof BaseAlignedWindowAssigner) { throw new UnsupportedOperationException("Cannot use a " + windowAssigner.getClass().getSimpleName() + " with a custom trigger."); } this.trigger = trigger; return this; } /** * Sets the time by which elements are allowed to be late. Elements that * arrive behind the watermark by more than the specified time will be dropped. * By default, the allowed lateness is {@code 0L}. * *

Setting an allowed lateness is only valid for event-time windows. */ @PublicEvolving public WindowedStream allowedLateness(Time lateness) { final long millis = lateness.toMilliseconds(); checkArgument(millis >= 0, "The allowed lateness cannot be negative."); this.allowedLateness = millis; return this; } /** * Send late arriving data to the side output identified by the given {@link OutputTag}. Data * is considered late after the watermark has passed the end of the window plus the allowed * lateness set using {@link #allowedLateness(Time)}. * *

You can get the stream of late data using * {@link SingleOutputStreamOperator#getSideOutput(OutputTag)} on the * {@link SingleOutputStreamOperator} resulting from the windowed operation * with the same {@link OutputTag}. */ @PublicEvolving public WindowedStream sideOutputLateData(OutputTag outputTag) { Preconditions.checkNotNull(outputTag, "Side output tag must not be null."); this.lateDataOutputTag = input.getExecutionEnvironment().clean(outputTag); return this; } /** * Sets the {@code Evictor} that should be used to evict elements from a window before emission. * *

Note: When using an evictor window performance will degrade significantly, since * incremental aggregation of window results cannot be used. */ @PublicEvolving public WindowedStream evictor(Evictor evictor) { if (windowAssigner instanceof BaseAlignedWindowAssigner) { throw new UnsupportedOperationException("Cannot use a " + windowAssigner.getClass().getSimpleName() + " with an Evictor."); } this.evictor = evictor; return this; } // ------------------------------------------------------------------------ // Operations on the keyed windows // ------------------------------------------------------------------------ /** * Applies a reduce function to the window. The window function is called for each evaluation * of the window for each key individually. The output of the reduce function is interpreted * as a regular non-windowed stream. * *

This window will try and incrementally aggregate data as much as the window policies * permit. For example, tumbling time windows can aggregate the data, meaning that only one * element per key is stored. Sliding time windows will aggregate on the granularity of the * slide interval, so a few elements are stored per key (one per slide interval). * Custom windows may not be able to incrementally aggregate, or may need to store extra values * in an aggregation tree. * * @param function The reduce function. * @return The data stream that is the result of applying the reduce function to the window. */ @SuppressWarnings("unchecked") public SingleOutputStreamOperator reduce(ReduceFunction function) { if (function instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of reduce can not be a RichFunction. " + "Please use reduce(ReduceFunction, WindowFunction) instead."); } //clean the closure function = input.getExecutionEnvironment().clean(function); return reduce(function, new PassThroughWindowFunction()); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @return The data stream that is the result of applying the window function to the window. */ public SingleOutputStreamOperator reduce( ReduceFunction reduceFunction, WindowFunction function) { TypeInformation inType = input.getType(); TypeInformation resultType = getWindowFunctionReturnType(function, inType); return reduce(reduceFunction, function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @param resultType Type information for the result type of the window function. * @return The data stream that is the result of applying the window function to the window. */ public SingleOutputStreamOperator reduce( ReduceFunction reduceFunction, WindowFunction function, TypeInformation resultType) { if (reduceFunction instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of reduce can not be a RichFunction."); } //clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, reduceFunction, function); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new ReduceApplyWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { ReducingStateDescriptor stateDesc = new ReducingStateDescriptor<>("window-contents", reduceFunction, input.getType().createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public SingleOutputStreamOperator reduce(ReduceFunction reduceFunction, ProcessWindowFunction function) { TypeInformation resultType = getProcessWindowFunctionReturnType(function, input.getType(), null); return reduce(reduceFunction, function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ @Internal public SingleOutputStreamOperator reduce(ReduceFunction reduceFunction, ProcessWindowFunction function, TypeInformation resultType) { if (reduceFunction instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of apply can not be a RichFunction."); } //clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, reduceFunction, function); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableProcessWindowFunction<>(new ReduceApplyProcessWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { ReducingStateDescriptor stateDesc = new ReducingStateDescriptor<>("window-contents", reduceFunction, input.getType().createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueProcessWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } // ------------------------------------------------------------------------ // Fold Function // ------------------------------------------------------------------------ /** * Applies the given fold function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the reduce function is * interpreted as a regular non-windowed stream. * * @param function The fold function. * @return The data stream that is the result of applying the fold function to the window. * * @deprecated use {@link #aggregate(AggregationFunction)} instead */ @Deprecated public SingleOutputStreamOperator fold(R initialValue, FoldFunction function) { if (function instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction can not be a RichFunction. " + "Please use fold(FoldFunction, WindowFunction) instead."); } TypeInformation resultType = TypeExtractor.getFoldReturnTypes(function, input.getType(), Utils.getCallLocationName(), true); return fold(initialValue, function, resultType); } /** * Applies the given fold function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the reduce function is * interpreted as a regular non-windowed stream. * * @param function The fold function. * @return The data stream that is the result of applying the fold function to the window. * * @deprecated use {@link #aggregate(AggregateFunction, TypeInformation, TypeInformation)} instead */ @Deprecated public SingleOutputStreamOperator fold(R initialValue, FoldFunction function, TypeInformation resultType) { if (function instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction can not be a RichFunction. " + "Please use fold(FoldFunction, WindowFunction) instead."); } return fold(initialValue, function, new PassThroughWindowFunction(), resultType, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue The initial value of the fold. * @param foldFunction The fold function that is used for incremental aggregation. * @param function The window function. * @return The data stream that is the result of applying the window function to the window. * * @deprecated use {@link #aggregate(AggregateFunction, WindowFunction)} instead */ @PublicEvolving @Deprecated public SingleOutputStreamOperator fold(ACC initialValue, FoldFunction foldFunction, WindowFunction function) { TypeInformation foldAccumulatorType = TypeExtractor.getFoldReturnTypes(foldFunction, input.getType(), Utils.getCallLocationName(), true); TypeInformation resultType = getWindowFunctionReturnType(function, foldAccumulatorType); return fold(initialValue, foldFunction, function, foldAccumulatorType, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue The initial value of the fold. * @param foldFunction The fold function that is used for incremental aggregation. * @param function The window function. * @param foldAccumulatorType Type information for the result type of the fold function * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. * * @deprecated use {@link #aggregate(AggregateFunction, ProcessWindowFunction, TypeInformation, TypeInformation, TypeInformation)} instead */ @PublicEvolving @Deprecated public SingleOutputStreamOperator fold(ACC initialValue, FoldFunction foldFunction, WindowFunction function, TypeInformation foldAccumulatorType, TypeInformation resultType) { if (foldFunction instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction of fold can not be a RichFunction."); } if (windowAssigner instanceof MergingWindowAssigner) { throw new UnsupportedOperationException("Fold cannot be used with a merging WindowAssigner."); } if (windowAssigner instanceof BaseAlignedWindowAssigner) { throw new UnsupportedOperationException("Fold cannot be used with a " + windowAssigner.getClass().getSimpleName() + " assigner."); } //clean the closures function = input.getExecutionEnvironment().clean(function); foldFunction = input.getExecutionEnvironment().clean(foldFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, foldFunction, function); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new FoldApplyWindowFunction<>(initialValue, foldFunction, function, foldAccumulatorType)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { FoldingStateDescriptor stateDesc = new FoldingStateDescriptor<>("window-contents", initialValue, foldFunction, foldAccumulatorType.createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue The initial value of the fold. * @param foldFunction The fold function that is used for incremental aggregation. * @param windowFunction The window function. * @return The data stream that is the result of applying the window function to the window. * * @deprecated use {@link #aggregate(AggregateFunction, WindowFunction)} instead */ @PublicEvolving @Deprecated public SingleOutputStreamOperator fold(ACC initialValue, FoldFunction foldFunction, ProcessWindowFunction windowFunction) { if (foldFunction instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction can not be a RichFunction."); } TypeInformation foldResultType = TypeExtractor.getFoldReturnTypes(foldFunction, input.getType(), Utils.getCallLocationName(), true); TypeInformation windowResultType = getProcessWindowFunctionReturnType(windowFunction, foldResultType, Utils.getCallLocationName()); return fold(initialValue, foldFunction, windowFunction, foldResultType, windowResultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue the initial value to be passed to the first invocation of the fold function * @param foldFunction The fold function. * @param foldResultType The result type of the fold function. * @param windowFunction The process window function. * @param windowResultType The process window function result type. * @return The data stream that is the result of applying the fold function to the window. * * @deprecated use {@link #aggregate(AggregateFunction, WindowFunction, TypeInformation, TypeInformation, TypeInformation)} instead */ @Deprecated @Internal public SingleOutputStreamOperator fold( ACC initialValue, FoldFunction foldFunction, ProcessWindowFunction windowFunction, TypeInformation foldResultType, TypeInformation windowResultType) { if (foldFunction instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction can not be a RichFunction."); } if (windowAssigner instanceof MergingWindowAssigner) { throw new UnsupportedOperationException("Fold cannot be used with a merging WindowAssigner."); } //clean the closures windowFunction = input.getExecutionEnvironment().clean(windowFunction); foldFunction = input.getExecutionEnvironment().clean(foldFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, foldFunction, windowFunction); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableProcessWindowFunction<>(new FoldApplyProcessWindowFunction<>(initialValue, foldFunction, windowFunction, foldResultType)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { FoldingStateDescriptor stateDesc = new FoldingStateDescriptor<>("window-contents", initialValue, foldFunction, foldResultType.createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueProcessWindowFunction<>(windowFunction), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, windowResultType, operator); } // ------------------------------------------------------------------------ // Aggregation Function // ------------------------------------------------------------------------ /** * Applies the given aggregation function to each window. The aggregation function is called for * each element, aggregating values incrementally and keeping the state to one accumulator * per key and window. * * @param function The aggregation function. * @return The data stream that is the result of applying the fold function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of the elements in the resulting stream, equal to the * AggregateFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate(AggregateFunction function) { checkNotNull(function, "function"); if (function instanceof RichFunction) { throw new UnsupportedOperationException("This aggregation function cannot be a RichFunction."); } TypeInformation accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( function, input.getType(), null, false); TypeInformation resultType = TypeExtractor.getAggregateFunctionReturnType( function, input.getType(), null, false); return aggregate(function, accumulatorType, resultType); } /** * Applies the given aggregation function to each window. The aggregation function is called for * each element, aggregating values incrementally and keeping the state to one accumulator * per key and window. * * @param function The aggregation function. * @return The data stream that is the result of applying the aggregation function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of the elements in the resulting stream, equal to the * AggregateFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate( AggregateFunction function, TypeInformation accumulatorType, TypeInformation resultType) { checkNotNull(function, "function"); checkNotNull(accumulatorType, "accumulatorType"); checkNotNull(resultType, "resultType"); if (function instanceof RichFunction) { throw new UnsupportedOperationException("This aggregation function cannot be a RichFunction."); } return aggregate(function, new PassThroughWindowFunction(), accumulatorType, resultType, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction The aggregate function that is used for incremental aggregation. * @param windowFunction The window function. * * @return The data stream that is the result of applying the window function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of AggregateFunction's result, and the WindowFunction's input * @param The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate( AggregateFunction aggFunction, WindowFunction windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( aggFunction, input.getType(), null, false); TypeInformation aggResultType = TypeExtractor.getAggregateFunctionReturnType( aggFunction, input.getType(), null, false); TypeInformation resultType = getWindowFunctionReturnType(windowFunction, aggResultType); return aggregate(aggFunction, windowFunction, accumulatorType, aggResultType, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction The aggregation function that is used for incremental aggregation. * @param windowFunction The window function. * @param accumulatorType Type information for the internal accumulator type of the aggregation function * @param resultType Type information for the result type of the window function * * @return The data stream that is the result of applying the window function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of AggregateFunction's result, and the WindowFunction's input * @param The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate( AggregateFunction aggregateFunction, WindowFunction windowFunction, TypeInformation accumulatorType, TypeInformation aggregateResultType, TypeInformation resultType) { checkNotNull(aggregateFunction, "aggregateFunction"); checkNotNull(windowFunction, "windowFunction"); checkNotNull(accumulatorType, "accumulatorType"); checkNotNull(aggregateResultType, "aggregateResultType"); checkNotNull(resultType, "resultType"); if (aggregateFunction instanceof RichFunction) { throw new UnsupportedOperationException("This aggregate function cannot be a RichFunction."); } //clean the closures windowFunction = input.getExecutionEnvironment().clean(windowFunction); aggregateFunction = input.getExecutionEnvironment().clean(aggregateFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, aggregateFunction, windowFunction); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new AggregateApplyWindowFunction<>(aggregateFunction, windowFunction)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { AggregatingStateDescriptor stateDesc = new AggregatingStateDescriptor<>("window-contents", aggregateFunction, accumulatorType.createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(windowFunction), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction The aggregate function that is used for incremental aggregation. * @param windowFunction The window function. * * @return The data stream that is the result of applying the window function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of AggregateFunction's result, and the WindowFunction's input * @param The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate( AggregateFunction aggFunction, ProcessWindowFunction windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( aggFunction, input.getType(), null, false); TypeInformation aggResultType = TypeExtractor.getAggregateFunctionReturnType( aggFunction, input.getType(), null, false); TypeInformation resultType = getProcessWindowFunctionReturnType(windowFunction, aggResultType, null); return aggregate(aggFunction, windowFunction, accumulatorType, aggResultType, resultType); } private static TypeInformation getWindowFunctionReturnType( WindowFunction function, TypeInformation inType) { return TypeExtractor.getUnaryOperatorReturnType( function, WindowFunction.class, 0, 1, new int[]{2, 0}, new int[]{3, 0}, inType, null, false); } private static TypeInformation getProcessWindowFunctionReturnType( ProcessWindowFunction function, TypeInformation inType, String functionName) { return TypeExtractor.getUnaryOperatorReturnType( function, ProcessWindowFunction.class, 0, 1, TypeExtractor.NO_INDEX, TypeExtractor.NO_INDEX, inType, functionName, false); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction The aggregation function that is used for incremental aggregation. * @param windowFunction The window function. * @param accumulatorType Type information for the internal accumulator type of the aggregation function * @param resultType Type information for the result type of the window function * * @return The data stream that is the result of applying the window function to the window. * * @param The type of the AggregateFunction's accumulator * @param The type of AggregateFunction's result, and the WindowFunction's input * @param The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public SingleOutputStreamOperator aggregate( AggregateFunction aggregateFunction, ProcessWindowFunction windowFunction, TypeInformation accumulatorType, TypeInformation aggregateResultType, TypeInformation resultType) { checkNotNull(aggregateFunction, "aggregateFunction"); checkNotNull(windowFunction, "windowFunction"); checkNotNull(accumulatorType, "accumulatorType"); checkNotNull(aggregateResultType, "aggregateResultType"); checkNotNull(resultType, "resultType"); if (aggregateFunction instanceof RichFunction) { throw new UnsupportedOperationException("This aggregate function cannot be a RichFunction."); } //clean the closures windowFunction = input.getExecutionEnvironment().clean(windowFunction); aggregateFunction = input.getExecutionEnvironment().clean(aggregateFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, aggregateFunction, windowFunction); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalAggregateProcessWindowFunction<>(aggregateFunction, windowFunction), trigger, evictor, allowedLateness, lateDataOutputTag); } else { AggregatingStateDescriptor stateDesc = new AggregatingStateDescriptor<>("window-contents", aggregateFunction, accumulatorType.createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueProcessWindowFunction<>(windowFunction), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } // ------------------------------------------------------------------------ // Window Function (apply) // ------------------------------------------------------------------------ /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Not that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function The window function. * @return The data stream that is the result of applying the window function to the window. */ public SingleOutputStreamOperator apply(WindowFunction function) { TypeInformation resultType = getWindowFunctionReturnType(function, getInputType()); return apply(function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ public SingleOutputStreamOperator apply(WindowFunction function, TypeInformation resultType) { function = input.getExecutionEnvironment().clean(function); return apply(new InternalIterableWindowFunction<>(function), resultType, function); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Not that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function The window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public SingleOutputStreamOperator process(ProcessWindowFunction function) { TypeInformation resultType = getProcessWindowFunctionReturnType(function, getInputType(), null); return process(function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Not that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ @Internal public SingleOutputStreamOperator process(ProcessWindowFunction function, TypeInformation resultType) { function = input.getExecutionEnvironment().clean(function); return apply(new InternalIterableProcessWindowFunction<>(function), resultType, function); } private SingleOutputStreamOperator apply(InternalWindowFunction, R, K, W> function, TypeInformation resultType, Function originalFunction) { final String opName = generateOperatorName(windowAssigner, trigger, evictor, originalFunction, null); KeySelector keySel = input.getKeySelector(); WindowOperator, R, W> operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, function, trigger, evictor, allowedLateness, lateDataOutputTag); } else { ListStateDescriptor stateDesc = new ListStateDescriptor<>("window-contents", input.getType().createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, function, trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @return The data stream that is the result of applying the window function to the window. * * @deprecated Use {@link #reduce(ReduceFunction, WindowFunction)} instead. */ @Deprecated public SingleOutputStreamOperator apply(ReduceFunction reduceFunction, WindowFunction function) { TypeInformation inType = input.getType(); TypeInformation resultType = getWindowFunctionReturnType(function, inType); return apply(reduceFunction, function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction The reduce function that is used for incremental aggregation. * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. * * @deprecated Use {@link #reduce(ReduceFunction, WindowFunction, TypeInformation)} instead. */ @Deprecated public SingleOutputStreamOperator apply(ReduceFunction reduceFunction, WindowFunction function, TypeInformation resultType) { if (reduceFunction instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of apply can not be a RichFunction."); } //clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, reduceFunction, function); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new ReduceApplyWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { ReducingStateDescriptor stateDesc = new ReducingStateDescriptor<>("window-contents", reduceFunction, input.getType().createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue The initial value of the fold. * @param foldFunction The fold function that is used for incremental aggregation. * @param function The window function. * @return The data stream that is the result of applying the window function to the window. * * @deprecated Use {@link #fold(Object, FoldFunction, WindowFunction)} instead. */ @Deprecated public SingleOutputStreamOperator apply(R initialValue, FoldFunction foldFunction, WindowFunction function) { TypeInformation resultType = TypeExtractor.getFoldReturnTypes(foldFunction, input.getType(), Utils.getCallLocationName(), true); return apply(initialValue, foldFunction, function, resultType); } /** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * *

Arriving data is incrementally aggregated using the given fold function. * * @param initialValue The initial value of the fold. * @param foldFunction The fold function that is used for incremental aggregation. * @param function The window function. * @param resultType Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. * * @deprecated Use {@link #fold(Object, FoldFunction, WindowFunction, TypeInformation, TypeInformation)} instead. */ @Deprecated public SingleOutputStreamOperator apply(R initialValue, FoldFunction foldFunction, WindowFunction function, TypeInformation resultType) { if (foldFunction instanceof RichFunction) { throw new UnsupportedOperationException("FoldFunction of apply can not be a RichFunction."); } if (windowAssigner instanceof MergingWindowAssigner) { throw new UnsupportedOperationException("Fold cannot be used with a merging WindowAssigner."); } //clean the closures function = input.getExecutionEnvironment().clean(function); foldFunction = input.getExecutionEnvironment().clean(foldFunction); final String opName = generateOperatorName(windowAssigner, trigger, evictor, foldFunction, function); KeySelector keySel = input.getKeySelector(); OneInputStreamOperator operator; if (evictor != null) { @SuppressWarnings({"unchecked", "rawtypes"}) TypeSerializer> streamRecordSerializer = (TypeSerializer>) new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())); ListStateDescriptor> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableWindowFunction<>(new FoldApplyWindowFunction<>(initialValue, foldFunction, function, resultType)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { FoldingStateDescriptor stateDesc = new FoldingStateDescriptor<>("window-contents", initialValue, foldFunction, resultType.createSerializer(getExecutionEnvironment().getConfig())); operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator); } private static String generateFunctionName(Function function) { Class functionClass = function.getClass(); if (functionClass.isAnonymousClass()) { // getSimpleName returns an empty String for anonymous classes Type[] interfaces = functionClass.getInterfaces(); if (interfaces.length == 0) { // extends an existing class (like RichMapFunction) Class functionSuperClass = functionClass.getSuperclass(); return functionSuperClass.getSimpleName() + functionClass.getName().substring(functionClass.getEnclosingClass().getName().length()); } else { // implements a Function interface Class functionInterface = functionClass.getInterfaces()[0]; return functionInterface.getSimpleName() + functionClass.getName().substring(functionClass.getEnclosingClass().getName().length()); } } else { return functionClass.getSimpleName(); } } private static String generateOperatorName( WindowAssigner assigner, Trigger trigger, @Nullable Evictor evictor, Function function1, @Nullable Function function2) { return "Window(" + assigner + ", " + trigger.getClass().getSimpleName() + ", " + (evictor == null ? "" : (evictor.getClass().getSimpleName() + ", ")) + generateFunctionName(function1) + (function2 == null ? "" : (", " + generateFunctionName(function2))) + ")"; } // ------------------------------------------------------------------------ // Pre-defined aggregations on the keyed windows // ------------------------------------------------------------------------ /** * Applies an aggregation that sums every window of the data stream at the * given position. * * @param positionToSum The position in the tuple/array to sum * @return The transformed DataStream. */ public SingleOutputStreamOperator sum(int positionToSum) { return aggregate(new SumAggregator<>(positionToSum, input.getType(), input.getExecutionConfig())); } /** * Applies an aggregation that sums every window of the pojo data stream at the given field for * every window. * *

A field expression is either the name of a public field or a getter method with * parentheses of the stream's underlying type. A dot can be used to drill down into objects, * as in {@code "field1.getInnerField2()" }. * * @param field The field to sum * @return The transformed DataStream. */ public SingleOutputStreamOperator sum(String field) { return aggregate(new SumAggregator<>(field, input.getType(), input.getExecutionConfig())); } /** * Applies an aggregation that that gives the minimum value of every window * of the data stream at the given position. * * @param positionToMin The position to minimize * @return The transformed DataStream. */ public SingleOutputStreamOperator min(int positionToMin) { return aggregate(new ComparableAggregator<>(positionToMin, input.getType(), AggregationFunction.AggregationType.MIN, input.getExecutionConfig())); } /** * Applies an aggregation that that gives the minimum value of the pojo data * stream at the given field expression for every window. * *

A field * expression is either the name of a public field or a getter method with * parentheses of the {@link DataStream}S underlying type. A dot can be used * to drill down into objects, as in {@code "field1.getInnerField2()" }. * * @param field The field expression based on which the aggregation will be applied. * @return The transformed DataStream. */ public SingleOutputStreamOperator min(String field) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationFunction.AggregationType.MIN, false, input.getExecutionConfig())); } /** * Applies an aggregation that gives the minimum element of every window of * the data stream by the given position. If more elements have the same * minimum value the operator returns the first element by default. * * @param positionToMinBy * The position to minimize by * @return The transformed DataStream. */ public SingleOutputStreamOperator minBy(int positionToMinBy) { return this.minBy(positionToMinBy, true); } /** * Applies an aggregation that gives the minimum element of every window of * the data stream by the given field. If more elements have the same * minimum value the operator returns the first element by default. * * @param field The field to minimize by * @return The transformed DataStream. */ public SingleOutputStreamOperator minBy(String field) { return this.minBy(field, true); } /** * Applies an aggregation that gives the minimum element of every window of * the data stream by the given position. If more elements have the same * minimum value the operator returns either the first or last one depending * on the parameter setting. * * @param positionToMinBy The position to minimize * @param first If true, then the operator return the first element with the minimum value, otherwise returns the last * @return The transformed DataStream. */ public SingleOutputStreamOperator minBy(int positionToMinBy, boolean first) { return aggregate(new ComparableAggregator<>(positionToMinBy, input.getType(), AggregationFunction.AggregationType.MINBY, first, input.getExecutionConfig())); } /** * Applies an aggregation that that gives the minimum element of the pojo * data stream by the given field expression for every window. A field * expression is either the name of a public field or a getter method with * parentheses of the {@link DataStream DataStreams} underlying type. A dot can be used * to drill down into objects, as in {@code "field1.getInnerField2()" }. * * @param field The field expression based on which the aggregation will be applied. * @param first If True then in case of field equality the first object will be returned * @return The transformed DataStream. */ public SingleOutputStreamOperator minBy(String field, boolean first) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationFunction.AggregationType.MINBY, first, input.getExecutionConfig())); } /** * Applies an aggregation that gives the maximum value of every window of * the data stream at the given position. * * @param positionToMax The position to maximize * @return The transformed DataStream. */ public SingleOutputStreamOperator max(int positionToMax) { return aggregate(new ComparableAggregator<>(positionToMax, input.getType(), AggregationFunction.AggregationType.MAX, input.getExecutionConfig())); } /** * Applies an aggregation that that gives the maximum value of the pojo data * stream at the given field expression for every window. A field expression * is either the name of a public field or a getter method with parentheses * of the {@link DataStream DataStreams} underlying type. A dot can be used to drill * down into objects, as in {@code "field1.getInnerField2()" }. * * @param field The field expression based on which the aggregation will be applied. * @return The transformed DataStream. */ public SingleOutputStreamOperator max(String field) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationFunction.AggregationType.MAX, false, input.getExecutionConfig())); } /** * Applies an aggregation that gives the maximum element of every window of * the data stream by the given position. If more elements have the same * maximum value the operator returns the first by default. * * @param positionToMaxBy * The position to maximize by * @return The transformed DataStream. */ public SingleOutputStreamOperator maxBy(int positionToMaxBy) { return this.maxBy(positionToMaxBy, true); } /** * Applies an aggregation that gives the maximum element of every window of * the data stream by the given field. If more elements have the same * maximum value the operator returns the first by default. * * @param field * The field to maximize by * @return The transformed DataStream. */ public SingleOutputStreamOperator maxBy(String field) { return this.maxBy(field, true); } /** * Applies an aggregation that gives the maximum element of every window of * the data stream by the given position. If more elements have the same * maximum value the operator returns either the first or last one depending * on the parameter setting. * * @param positionToMaxBy The position to maximize by * @param first If true, then the operator return the first element with the maximum value, otherwise returns the last * @return The transformed DataStream. */ public SingleOutputStreamOperator maxBy(int positionToMaxBy, boolean first) { return aggregate(new ComparableAggregator<>(positionToMaxBy, input.getType(), AggregationFunction.AggregationType.MAXBY, first, input.getExecutionConfig())); } /** * Applies an aggregation that that gives the maximum element of the pojo * data stream by the given field expression for every window. A field * expression is either the name of a public field or a getter method with * parentheses of the {@link DataStream}S underlying type. A dot can be used * to drill down into objects, as in {@code "field1.getInnerField2()" }. * * @param field The field expression based on which the aggregation will be applied. * @param first If True then in case of field equality the first object will be returned * @return The transformed DataStream. */ public SingleOutputStreamOperator maxBy(String field, boolean first) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationFunction.AggregationType.MAXBY, first, input.getExecutionConfig())); } private SingleOutputStreamOperator aggregate(AggregationFunction aggregator) { return reduce(aggregator); } public StreamExecutionEnvironment getExecutionEnvironment() { return input.getExecutionEnvironment(); } public TypeInformation getInputType() { return input.getType(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy