All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap Maven / Gradle / Ivy

Go to download

Apache Geode provides a database-like consistency model, reliable transaction processing and a shared-nothing architecture to maintain very low latency performance with high concurrency processing

There is a newer version: 1.15.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more contributor license
 * agreements. See the NOTICE file distributed with this work for additional information regarding
 * copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance with the License. You may obtain a
 * copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/**
 * ConcurrentHashMap implementation adapted from JSR 166 backport
 * (http://backport-jsr166.sourceforge.net) JDK5 version release 3.1 with modifications to use
 * generics where appropriate: backport-util-concurrent-Java60-3.1-src.tar.gz
 * 
 * Primary change is to allow HashEntry be an interface so that custom HashEntry implementations can
 * be plugged in. These HashEntry objects are now assumed to be immutable in the sense that they
 * cannot and should not be cloned in a rehash, and the rehash mechanism has been recoded using
 * locking for that. For Geode, this is now used to plugin the RegionEntry implementation directly
 * as a HashEntry instead of having it as a value and then HashEntry as a separate object having
 * references to key/value which reduces the entry overhead substantially. Other change is to add a
 * "create" method that creates a new object using the {@link MapCallback} interface only if
 * required unlike "putIfAbsent" that requires a pre-built object that may ultimately be thrown
 * away. Also added a "removeConditionally" method that allows for evaluation of an arbitrary
 * condition before removal from the map (unlike the normal "remove" that can only check for
 * equality with a provided object). In addition, the segments are now locked using read-write
 * locks. File has been reformatted to conform to GemStone conventions. GemStone additions have been
 * marked with "GemStone addition". GemStone changes have been marked with "GemStone change(s)".
 * 
 * Original license follows below.
 */

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166 Expert Group and released to the
 * public domain, as explained at http://creativecommons.org/licenses/publicdomain
 */

package org.apache.geode.internal.util.concurrent;

import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Enumeration;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.locks.ReentrantReadWriteLock;

import org.apache.geode.CancelException;
import org.apache.geode.distributed.internal.InternalDistributedSystem;
import org.apache.geode.internal.cache.wan.GatewaySenderEventImpl;
import org.apache.geode.internal.cache.OffHeapRegionEntry;
import org.apache.geode.internal.cache.RegionEntry;
import org.apache.geode.internal.offheap.OffHeapRegionEntryHelper;
import org.apache.geode.internal.size.SingleObjectSizer;
import org.apache.geode.internal.util.ArrayUtils;

/**
 * A hash table supporting full concurrency of retrievals and adjustable expected concurrency for
 * updates. This class obeys the same functional specification as {@link java.util.Hashtable}, and
 * includes versions of methods corresponding to each method of Hashtable. However, even
 * though all operations are thread-safe, retrieval operations do not entail locking, and
 * there is not any support for locking the entire table in a way that prevents all access.
 * This class is fully interoperable with Hashtable in programs that rely on its thread
 * safety but not on its synchronization details.
 * 
 * 

* Retrieval operations (including get) generally do not block, so may overlap with update * operations (including put and remove). Retrievals reflect the results of the * most recently completed update operations holding upon their onset. For aggregate * operations such as putAll and clear, concurrent retrievals may reflect * insertion or removal of only some entries. Similarly, Iterators and Enumerations return elements * reflecting the state of the hash table at some point at or since the creation of the * iterator/enumeration. They do not throw * {@link java.util.ConcurrentModificationException}. However, iterators are designed to be used by * only one thread at a time. * *

* The allowed concurrency among update operations is guided by the optional * concurrencyLevel constructor argument (default 16), which is used as a hint for * internal sizing. The table is internally partitioned to try to permit the indicated number of * concurrent updates without contention. Because placement in hash tables is essentially random, * the actual concurrency will vary. Ideally, you should choose a value to accommodate as many * threads as will ever concurrently modify the table. Using a significantly higher value than you * need can waste space and time, and a significantly lower value can lead to thread contention. But * overestimates and underestimates within an order of magnitude do not usually have much noticeable * impact. A value of one is appropriate when it is known that only one thread will modify and all * others will only read. Also, resizing this or any other kind of hash table is a relatively slow * operation, so, when possible, it is a good idea to provide estimates of expected table sizes in * constructors. * *

* This class and its views and iterators implement all of the optional methods of the * {@link Map} and {@link Iterator} interfaces. * *

* Like {@link java.util.Hashtable} but unlike {@link java.util.HashMap}, this class does * not allow null to be used as a key or value. * *

* This class is a member of the * Java Collections Framework. * * @since GemFire 1.5 * @author Doug Lea * @param the type of keys maintained by this map * @param the type of mapped values */ public class CustomEntryConcurrentHashMap extends AbstractMap implements ConcurrentMap, Serializable { private static final long serialVersionUID = -7056732555635108300L; /* * The basic strategy is to subdivide the table among Segments, each of which itself is a * concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, used when not otherwise specified in a * constructor. */ public static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise specified in a constructor. */ public static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not otherwise specified in a * constructor. */ public static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly specified by either of the * constructors with arguments. MUST be a power of two <= 1<<30 to ensure that entries are * indexable using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue methods before resorting to locking. * This is used to avoid unbounded retries if tables undergo continuous modification which would * make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; // GemStone addition /** * Token object to indicate that {@link #remove(Object)} does not need to compare against provided * value before removing from segment. */ private static final Object NO_OBJECT_TOKEN = new Object(); // End GemStone addition /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose * the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; /** * {@link HashEntryCreator} for the map to create {@link HashEntry}s. */ final HashEntryCreator entryCreator; /** * If true then use equals for comparing key and value equality else use reference-equality like * an {@link IdentityHashMap}. */ final boolean compareValues; transient Set keySet; transient Set> entrySet; transient Set> reusableEntrySet; // GemStone addition transient Collection values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which defends against poor quality * hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash * tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper * bits. */ public static final int keyHash(final Object o, final boolean compareValues) { int h = compareValues ? o.hashCode() : System.identityHashCode(o); // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * * @param hash the hash code for the key * @return the segment */ final Segment segmentFor(final int hash) { if (this.segmentMask == 0) { return this.segments[0]; } return this.segments[(hash >>> this.segmentShift) & this.segmentMask]; } /* ---------------- Inner Classes -------------- */ // GemStone addition // GemStone changed HashEntry to be an interface with original HashEntry // as the default implementation HashEntryImpl. /** * [sumedh] Interface for ConcurrentHashMap list entry. Note that this is never exported out as a * user-visible Map.Entry. * * Made this public so RegionEntries can directly implement this to reduce memory overhead of * separate * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntry} * objects for each entry in the map. */ public static interface HashEntry { /** * Get the key object for this entry. */ K getKey(); /** * Return true if the entry's key is equal to k. GemFire addition to deal with inline keys. */ boolean isKeyEqual(Object k); /** * Get the value for this entry. */ V getMapValue(); /** * Set the value for this entry. */ void setMapValue(V newValue); /** * Get the hash value for this entry. */ int getEntryHash(); /** * Get the next entry, if any, in the linear chain. */ HashEntry getNextEntry(); /** * Set the next entry in the linear chain. */ void setNextEntry(HashEntry n); } /** * ConcurrentHashMap list entry. Note that this is never exported out as a user-visible Map.Entry. * * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an * unsynchronized reader to see null instead of initial value when read via a data race. Although * a reordering leading to this is not likely to ever actually occur, the * Segment.readValueUnderLock method is used as a backup in case a null (pre-initialized) value is * ever seen in an unsynchronized access method. */ static final class HashEntryImpl implements HashEntry { protected final K key; protected final int hash; protected volatile V value; protected HashEntry next; private final HashEntry wrappedEntry; HashEntryImpl(final K key, final int hash, final HashEntry next, final V value, final HashEntry wrappedEntry) { this.key = key; this.hash = hash; this.next = next; this.value = value; this.wrappedEntry = wrappedEntry; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getKey() */ public final K getKey() { return this.key; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getMapValue() */ public final V getMapValue() { return this.value; } /** * @see CustomEntryConcurrentHashMap.HashEntry#setMapValue(Object) */ public final void setMapValue(V newValue) { this.value = newValue; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getEntryHash() */ public final int getEntryHash() { return this.hash; } /** * @see CustomEntryConcurrentHashMap.HashEntry#getNextEntry() */ public final HashEntry getNextEntry() { return this.next; } /** * @see CustomEntryConcurrentHashMap.HashEntry#setNextEntry */ public final void setNextEntry(final HashEntry n) { this.next = n; } @Override public boolean isKeyEqual(Object k) { return k.equals(getKey()); } } /** * Interface to enable creation of new * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntry} * objects by caller. This can be used, for example, to return GemFire RegionEntries directly. */ public static interface HashEntryCreator { /** * Create a new * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntry} * given the key, hash, value and next element. */ public HashEntry newEntry(K key, int hash, HashEntry next, V value); /** * Get the hashCode for given key object. */ public int keyHashCode(Object key, boolean compareValues); } // End GemStone addition /** * Segments are specialized versions of hash tables. This subclasses from ReentrantLock * opportunistically, just to simplify some locking and avoid separate construction. */ static class Segment extends ReentrantReadWriteLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so can * be read without locking. Next fields of nodes are immutable (final). All list additions are * performed at the front of each bin. This makes it easy to check changes, and also fast to * traverse. When nodes would otherwise be changed, new nodes are created to replace them. This * works well for hash tables since the bin lists tend to be short. (The average length is less * than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely on selected uses of volatiles to * ensure that completed write operations performed by other threads are noticed. For most * purposes, the "count" field, tracking the number of elements, serves as that volatile * variable ensuring visibility. This is convenient because this field needs to be read in many * read operations anyway: * * - All (unsynchronized) read operations must first read the "count" field, and should not look * at table entries if it is 0. * * - All (synchronized) write operations should write to the "count" field after structurally * changing any bin. The operations must not take any action that could even momentarily cause a * concurrent read operation to see inconsistent data. This is made easier by the nature of the * read operations in Map. For example, no operation can reveal that the table has grown but the * threshold has not yet been updated, so there are no atomicity requirements for this with * respect to reads. * * As a guide, all critical volatile reads and writes to the count field are marked in code * comments. */ private static final long serialVersionUID = -6972364566212065192L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is used during bulk-read methods to * make sure they see a consistent snapshot: If modCounts change during a traversal of segments * computing size or checking containsValue, then we might have an inconsistent view of state so * (usually) must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. (The value of this field is * always (int)(capacity * * loadFactor).) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry[] table; /** * The load factor for the hash table. Even though this value is same for all segments, it is * replicated to avoid needing links to outer object. * * @serial */ final float loadFactor; // GemStone addition /** * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntryCreator} * for the map to create * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntry}s. */ final HashEntryCreator entryCreator; /** * Lock used when updating the * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.HashEntry#getNextEntry()} * link of an entry. */ final ReentrantReadWriteLock listUpdateLock; // End GemStone addition Segment(final int initialCapacity, final float lf, final HashEntryCreator entryCreator) { this.loadFactor = lf; this.entryCreator = entryCreator; this.listUpdateLock = new ReentrantReadWriteLock(); setTable(Segment.newEntryArray(initialCapacity)); } @SuppressWarnings("unchecked") static Segment[] newArray(final int i) { return new Segment[i]; } // GemStone added the method below @SuppressWarnings("unchecked") static HashEntry[] newEntryArray(final int size) { return new HashEntry[size]; } /** * Sets table to new HashEntry array. Call only while holding lock or in constructor. */ final void setTable(final HashEntry[] newTable) { this.threshold = (int) (newTable.length * this.loadFactor); this.table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ final HashEntry getFirst(final int hash) { final HashEntry[] tab = this.table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value field ever appears to be null. This * is possible only if a compiler happens to reorder a HashEntry initialization with its table * assignment, which is legal under memory model but is not known to ever occur. */ final V readValueUnderLock(final HashEntry e) { final ReentrantReadWriteLock.ReadLock readLock = super.readLock(); readLock.lock(); final V v = e.getMapValue(); readLock.unlock(); return v; } /** * Added for GemFire since it stores some keys inline. */ protected boolean equalityKeyCompare(final Object key, final HashEntry mapEntry) { return mapEntry.isKeyEqual(key); } protected boolean equalityCompare(final Object v1, final Object v2) { return v1.equals(v2); } protected boolean equalityCompareWithNulls(final Object key, final Object mapKey) { if (key != mapKey) { if (key != null) { return key.equals(mapKey); } return false; } return true; } /* Specialized implementations of map methods */ final V get(final Object key, final int hash) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates final ReentrantReadWriteLock.ReadLock listLock = this.listUpdateLock.readLock(); listLock.lock(); boolean lockAcquired = true; HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { final V v = e.getMapValue(); if (v != null) { return v; } listLock.unlock(); lockAcquired = false; return readValueUnderLock(e); // recheck } e = e.getNextEntry(); } } finally { if (lockAcquired) { listLock.unlock(); } } } return null; } final V getNoLock(final Object key, final int hash, final boolean lockListForRead) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates ReentrantReadWriteLock.ReadLock listLock = null; if (lockListForRead) { listLock = this.listUpdateLock.readLock(); listLock.lock(); } HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { return e.getMapValue(); } e = e.getNextEntry(); } } finally { if (lockListForRead) { listLock.unlock(); } } } return null; } final boolean containsKey(final Object key, final int hash) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates final ReentrantReadWriteLock.ReadLock listLock = this.listUpdateLock.readLock(); listLock.lock(); HashEntry e = getFirst(hash); try { while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { return true; } e = e.getNextEntry(); } } finally { listLock.unlock(); } } return false; } final boolean containsValue(final Object value) { if (this.count != 0) { // read-volatile // GemStone change to acquire the read lock on list updates ReentrantReadWriteLock.ReadLock readLock = this.listUpdateLock.readLock(); RETRYLOOP: for (;;) { readLock.lock(); final HashEntry[] tab = this.table; final int len = tab.length; for (int i = 0; i < len; i++) { for (HashEntry e = tab[i]; e != null; e = e.getNextEntry()) { V v = e.getMapValue(); if (v == null) { // GemStone changes BEGIN // go back and retry from the very start with segment read lock readLock.unlock(); readLock = super.readLock(); continue RETRYLOOP; /* * (original code) v = readValueUnderLock(e); */ // GemStone changes END } if (equalityCompare(value, v)) { readLock.unlock(); return true; } } } readLock.unlock(); return false; } } return false; } final boolean replace(final K key, final int hash, final V oldValue, final V newValue) { final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { HashEntry e = getFirst(hash); while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } boolean replaced = false; if (e != null && equalityCompare(oldValue, e.getMapValue())) { replaced = true; e.setMapValue(newValue); } return replaced; } finally { writeLock.unlock(); } } final V replace(final K key, final int hash, final V newValue) { final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { HashEntry e = getFirst(hash); while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } V oldValue = null; if (e != null) { oldValue = e.getMapValue(); e.setMapValue(newValue); } return oldValue; } finally { writeLock.unlock(); } } final V put(final K key, final int hash, final V value, final boolean onlyIfAbsent) { final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { int c = this.count; if (c++ > this.threshold) { rehash(); } final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } final V oldValue; if (e != null) { oldValue = e.getMapValue(); if (!onlyIfAbsent) { e.setMapValue(value); } } else { oldValue = null; ++this.modCount; tab[index] = this.entryCreator.newEntry(key, hash, first, value); this.count = c; // write-volatile } return oldValue; } finally { writeLock.unlock(); } } // GemStone additions final V create(final K key, final int hash, final MapCallback valueCreator, final C context, final P createParams, final boolean lockForRead) { // TODO: This can be optimized by having a special lock implementation // that will allow upgrade from read to write lock atomically. This can // cause a deadlock if two readers try to simultaneously upgrade, so the // upgrade should be a tryLock that will fall back to the usual way if // unsuccessful. The advantage of that approach is that "equals" calls in // the list can be avoided completely if tryLock succeeds (i.e. presumably // the common case of no overlap on a segment concurrently). OTOH it will // not be as efficient when get succeeds without a read lock (existing // entry) that will not need to wait for any writers. if (!lockForRead) { final V v = getNoLock(key, hash, true); if (v != null) { return v; } } else { final ReentrantReadWriteLock.ReadLock readLock = super.readLock(); readLock.lock(); try { final V v = getNoLock(key, hash, false); if (v != null) { // invoke the callback before returning valueCreator.oldValueRead(v); return v; } } finally { readLock.unlock(); } } final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { int c = this.count; if (c++ > this.threshold) { rehash(); } final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); } final V currentValue; if (e == null) { ++this.modCount; currentValue = valueCreator.newValue(key, context, createParams); tab[index] = this.entryCreator.newEntry(key, hash, first, currentValue); this.count = c; // write-volatile return currentValue; } else { currentValue = e.getMapValue(); if (lockForRead) { // invoke the callback before returning an existing value valueCreator.oldValueRead(currentValue); } return currentValue; } } finally { writeLock.unlock(); } } final V get(final Object key, final int hash, final MapCallback readCallback) { final ReentrantReadWriteLock.ReadLock readLock = super.readLock(); readLock.lock(); try { if (this.count != 0) { // read-volatile HashEntry e = getFirst(hash); while (e != null) { if (e.getEntryHash() == hash && equalityKeyCompare(key, e)) { final V v = e.getMapValue(); if (v != null) { if (readCallback != null) { readCallback.oldValueRead(v); } return v; } } e = e.getNextEntry(); } } } finally { readLock.unlock(); } return null; } // End GemStone additions final void rehash() { final HashEntry[] oldTable = this.table; final int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) { return; } /* * Reclassify nodes in each list to new Map. Because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move with a power of two offset. * We eliminate unnecessary node creation by catching cases where old nodes can be reused * because their next fields won't change. Statistically, at the default threshold, only about * one-sixth of them need cloning when a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any reader thread that may be in * the midst of traversing table right now. */ final HashEntry[] newTable = newEntryArray(oldCapacity << 1); this.threshold = (int) (newTable.length * this.loadFactor); final int sizeMask = newTable.length - 1; for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. final HashEntry e = oldTable[i]; if (e != null) { final HashEntry next = e.getNextEntry(); final int idx = e.getEntryHash() & sizeMask; // Single node on list if (next == null) { newTable[idx] = e; } else { // Reuse trailing consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; for (HashEntry last = next; last != null; last = last.getNextEntry()) { final int k = last.getEntryHash() & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes // GemStone changes BEGIN // update the next entry instead of cloning the nodes in newTable; // this is primarily because we don't want to change // the underlying RegionEntry that may be used elsewhere; // however we create new wrapper entries for old table so that // iterators can continue on old table without blocking updates // for indefinite periods HashEntryImpl newe, newp = null, newFirst = null; HashEntry nextp; // Bug 44155 - we need to clone all of the entries, not just // the entries leading up to lastRun, because the entries // in the last run may have their next pointers changed // by a later rehash. for (HashEntry p = e; p != null; p = nextp) { newe = new HashEntryImpl(p.getKey(), p.getEntryHash(), (nextp = p.getNextEntry()), p.getMapValue(), p); if (newp != null) { newp.setNextEntry(newe); } else { newFirst = newe; } newp = newe; } // take the listUpdate write lock before updating the next refs final ReentrantReadWriteLock.WriteLock listWriteLock = this.listUpdateLock.writeLock(); listWriteLock.lock(); try { if (newFirst != null) { this.table[i] = newFirst; // deliberately using volatile write } for (HashEntry p = e; p != lastRun; p = nextp) { final int k = p.getEntryHash() & sizeMask; final HashEntry n = newTable[k]; nextp = p.getNextEntry(); p.setNextEntry(n); newTable[k] = p; } } finally { listWriteLock.unlock(); } /* * (original code) for (HashEntry p = e; p != lastRun; p = p.next) { final int k = * p.hash & sizeMask; final HashEntry n = newTable[k]; newTable[k] = * this.entryCreator.newEntry(p.key, p.hash, n, p.value); } */ // GemStone changes END } } } this.table = newTable; } /** * Remove; match on key only if value null, else match both. */ // GemStone change // added "condition" and "removeParams" parameters final V remove(final Object key, final int hash, final Object value, final MapCallback condition, final C context, final P removeParams) { // End GemStone change final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { final int c = this.count - 1; final HashEntry[] tab = this.table; final int index = hash & (tab.length - 1); final HashEntry first = tab[index]; HashEntry e = first; // GemStone change // the entry previous to the matched one, if any HashEntry p = null; while (e != null && (e.getEntryHash() != hash || !equalityKeyCompare(key, e))) { e = e.getNextEntry(); if (p == null) { p = first; } else { p = p.getNextEntry(); } } V oldValue = null; if (e != null) { final V v = e.getMapValue(); // GemStone change // allow for passing in a null object for comparison during remove; // also invoke the provided condition to check for removal if ((value == NO_OBJECT_TOKEN || equalityCompareWithNulls(v, value)) && (condition == null || condition.doRemoveValue(v, context, removeParams))) { // End GemStone change oldValue = v; // All entries following removed node can stay in list, // but all preceding ones need to be cloned. ++this.modCount; // GemStone changes BEGIN // update the next entry instead of cloning the nodes // this is primarily because we don't want to change // the underlying RegionEntry that may be used elsewhere final ReentrantReadWriteLock.WriteLock listWriteLock = this.listUpdateLock.writeLock(); listWriteLock.lock(); try { if (p == null) { tab[index] = e.getNextEntry(); } else { p.setNextEntry(e.getNextEntry()); } } finally { listWriteLock.unlock(); } /* * (original code) HashEntry newFirst = e.next; for (HashEntry p = first; p * != e; p = p.next) { newFirst = this.entryCreator.newEntry(p.key, p.hash, newFirst, * p.value); } tab[index] = newFirst; */ // GemStone changes END this.count = c; // write-volatile } } return oldValue; } finally { writeLock.unlock(); } } /** * GemStone added the clearedEntries param and the result */ final ArrayList> clear(ArrayList> clearedEntries) { if (this.count != 0) { final ReentrantReadWriteLock.WriteLock writeLock = super.writeLock(); writeLock.lock(); try { final HashEntry[] tab = this.table; // GemStone changes BEGIN boolean collectEntries = clearedEntries != null; if (!collectEntries) { // see if we have a map with off-heap region entries for (HashEntry he : tab) { if (he != null) { collectEntries = he instanceof OffHeapRegionEntry; if (collectEntries) { clearedEntries = new ArrayList>(); } // after the first non-null entry we are done break; } } } final boolean checkForGatewaySenderEvent = OffHeapRegionEntryHelper.doesClearNeedToCheckForOffHeap(); final boolean skipProcessOffHeap = !collectEntries && !checkForGatewaySenderEvent; if (skipProcessOffHeap) { Arrays.fill(tab, null); } else { for (int i = 0; i < tab.length; i++) { HashEntry he = tab[i]; if (he == null) continue; tab[i] = null; if (collectEntries) { clearedEntries.add(he); } else { for (HashEntry p = he; p != null; p = p.getNextEntry()) { if (p instanceof RegionEntry) { // It is ok to call GatewaySenderEventImpl release without being synced // on the region entry. It will not create an orphan. GatewaySenderEventImpl.release(((RegionEntry) p)._getValue()); // OFFHEAP // _getValue ok } } } } // GemStone changes END } ++this.modCount; this.count = 0; // write-volatile } finally { writeLock.unlock(); } } return clearedEntries; // GemStone change } } /** * Extension of * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.Segment} using * reference-equality comparison for key, value equality instead of equals method. * * swale * * @since GemFire 7.0 */ static final class IdentitySegment extends Segment implements Serializable { private static final long serialVersionUID = 3086228147110819882L; IdentitySegment(final int initialCapacity, final float lf, final HashEntryCreator entryCreator) { super(initialCapacity, lf, entryCreator); } @SuppressWarnings("unchecked") static final IdentitySegment[] newArray(final int i) { return new IdentitySegment[i]; } @Override protected final boolean equalityKeyCompare(final Object key, final HashEntry mapEntry) { return key == mapEntry.getKey(); } @Override protected final boolean equalityCompare(final Object key, final Object mapKey) { return key == mapKey; } @Override protected final boolean equalityCompareWithNulls(final Object key, final Object mapKey) { return key == mapKey; } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial capacity, load factor and concurrency * level. * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be * performed when the average number of elements per bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor, final int concurrencyLevel) { this(initialCapacity, loadFactor, concurrencyLevel, false, null); } // GemStone addition /** * Creates a new, empty map with the specified initial capacity, load factor and concurrency * level. * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be * performed when the average number of elements per bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this many threads. * @param isIdentityMap if true then this will use reference-equality instead of equals like an * {@link IdentityHashMap} * @throws IllegalArgumentException if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor, final int concurrencyLevel, final boolean isIdentityMap) { this(initialCapacity, loadFactor, concurrencyLevel, isIdentityMap, null); } /** * Creates a new, empty map with the specified initial capacity, load factor, concurrency level * and custom {@link HashEntryCreator}. * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be * performed when the average number of elements per bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this many threads. * @param isIdentityMap if true then this will use reference-equality instead of equals like an * {@link IdentityHashMap} * @param entryCreator a custom {@link HashEntryCreator} for creating the map entries * * @throws IllegalArgumentException if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public CustomEntryConcurrentHashMap(int initialCapacity, final float loadFactor, int concurrencyLevel, final boolean isIdentityMap, HashEntryCreator entryCreator) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) { throw new IllegalArgumentException(); } if (concurrencyLevel > MAX_SEGMENTS) { concurrencyLevel = MAX_SEGMENTS; } // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; if (concurrencyLevel > 1) { while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) { initialCapacity = MAXIMUM_CAPACITY; } int c = initialCapacity / ssize; if (c * ssize < initialCapacity) { ++c; } int cap = 1; while (cap < c) { cap <<= 1; } if (entryCreator == null) { entryCreator = new DefaultHashEntryCreator(); } if (!isIdentityMap) { this.compareValues = true; this.segments = Segment.newArray(ssize); this.entryCreator = entryCreator; for (int i = 0; i < ssize; ++i) { this.segments[i] = new Segment(cap, loadFactor, entryCreator); } } else { this.compareValues = false; this.segments = IdentitySegment.newArray(ssize); this.entryCreator = entryCreator; for (int i = 0; i < ssize; ++i) { this.segments[i] = new IdentitySegment(cap, loadFactor, entryCreator); } } } static final class DefaultHashEntryCreator implements HashEntryCreator, Serializable { private static final long serialVersionUID = 3765680607280951726L; public final HashEntry newEntry(final K key, final int hash, final HashEntry next, final V value) { return new HashEntryImpl(key, hash, next, value, null); } public final int keyHashCode(final Object key, final boolean compareValues) { return keyHash(key, compareValues); } } // End GemStone addition /** * Creates a new, empty map with the specified initial capacity and load factor and with the * default concurrencyLevel (16). * * @param initialCapacity The implementation performs internal sizing to accommodate this many * elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be * performed when the average number of elements per bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of elements is negative or the load * factor is nonpositive * * @since GemFire 1.6 */ public CustomEntryConcurrentHashMap(final int initialCapacity, final float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new, empty map with the specified initial capacity, and with default load factor * (0.75) and concurrencyLevel (16). * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of elements is negative. */ public CustomEntryConcurrentHashMap(final int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new, empty map with a default initial capacity (16), load factor (0.75) and * concurrencyLevel (16). */ public CustomEntryConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); } /** * Creates a new map with the same mappings as the given map. The map is created with a capacity * of 1.5 times the number of mappings in the given map or 16 (whichever is greater), and a * default load factor (0.75) and concurrencyLevel (16). * * @param m the map */ public CustomEntryConcurrentHashMap(final Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, false); putAll(m); } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ @Override public final boolean isEmpty() { final Segment[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA problems in which an element in one * segment was added and in another removed during traversal, in which case the table was never * actually empty at any point. Note the similar use of modCounts in the size() and * containsValue() methods, which are the only other methods also susceptible to ABA problems. */ final int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) { return false; } else { mcsum += mc[i] = segments[i].modCount; } } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) { return false; } } } return true; } /** * Returns the number of key-value mappings in this map. If the map contains more than * Integer.MAX_VALUE elements, returns Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ @Override @edu.umd.cs.findbugs.annotations.SuppressWarnings(value = "UL_UNRELEASED_LOCK", justification = "The lock() calls are followed by unlock() calls without finally-block. Leaving this as is because it's lifted from JDK code and we want to minimize changes.") public final int size() { final Segment[] segments = this.segments; long sum = 0; long check = 0; final int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) { break; } } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) { segments[i].readLock().lock(); } for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; } for (int i = 0; i < segments.length; ++i) { segments[i].readLock().unlock(); } } if (sum > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) sum; } } /** * Returns the value to which the specified key is mapped, or {@code null} if this map contains no * mapping for the key. * *

* More formally, if this map contains a mapping from a key {@code k} to a value {@code v} such * that {@code key.equals(k)}, then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public final V get(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return true if and only if the specified object is a key in this table, as determined * by the equals method; false otherwise. * @throws NullPointerException if the specified key is null */ @Override public final boolean containsKey(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).containsKey(key, hash); } /** * Returns true if this map maps one or more keys to the specified value. Note: This * method requires a full internal traversal of the hash table, and so is much slower than method * containsKey. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the specified value * @throws NullPointerException if the specified value is null */ @Override @edu.umd.cs.findbugs.annotations.SuppressWarnings(value = "UL_UNRELEASED_LOCK", justification = "Leaving this as is because it's lifted from JDK code and we want to minimize changes.") public final boolean containsValue(final Object value) { if (value == null) { throw new NullPointerException(); } // See explanation of modCount use above final Segment[] segments = this.segments; final int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int mcsum = 0; for (int i = 0; i < segments.length; ++i) { mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) { return true; } } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) { return false; } } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) { segments[i].readLock().lock(); } boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) { segments[i].readLock().unlock(); } } return found; } /** * Legacy method testing if some key maps into the specified value in this table. This method is * identical in functionality to {@link #containsValue}, and exists solely to ensure full * compatibility with class {@link java.util.Hashtable}, which supported this method prior to * introduction of the Java Collections framework. * * @param value a value to search for * @return true if and only if some key maps to the value argument in this table * as determined by the equals method; false otherwise * @throws NullPointerException if the specified value is null */ public final boolean contains(final Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. Neither the key nor the value can * be null. * *

* The value can be retrieved by calling the get method with a key that is equal to the * original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or null if there was no * mapping for key * @throws NullPointerException if the specified key or value is null */ @Override public final V put(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or null if there was no * mapping for the key * @throws NullPointerException if the specified key or value is null */ public final V putIfAbsent(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).put(key, hash, value, true); } // GemStone addition /** * Create a given key, value mapping if the key does not exist in the map else do nothing. The * difference between this method and {@link #putIfAbsent(Object, Object)} is that latter always * acquires a write lock on the segment which this acquires a write lock only if entry was not * found. In other words this method is more efficient for the case when number of entries is * small and same entries are being updated repeatedly. * * @return true if the key was successfully put in the map or false if there was an existing * mapping for the key in the map * * @throws NullPointerException if the specified key is null */ public final boolean create(final K key, final V value) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); final Segment seg = segmentFor(hash); if (seg.containsKey(key, hash)) { return false; } return seg.put(key, hash, value, true) == null; } /** * Factory to create a value on demand for * {@link #create(Object, MapCallback, Object, Object, boolean)} rather than requiring a pre-built * object as in {@link #putIfAbsent(Object, Object)} that may be ultimately thrown away. *

* Also allows invoking a method when removing from map by a call to * {@link #removeConditionally(Object, MapCallback, Object, Object)}. * * @since GemFire 7.0 * * @param the type of key of the map * @param the type of value of the map * @param the type of context parameter passed to the creation/removal methods * @param

the type of extra parameter passed to the creation/removal methods */ public static interface MapCallback { /** * Create a new instance of the value object given the key and provided parameters for * construction. * * @param key the key for which the value is being created * @param context any context in which this method has been invoked * @param createParams parameters, if any, required for construction of a new value object */ public V newValue(K key, C context, P createParams); /** * Invoked when an existing value in map is read by the * {@link #create(Object, MapCallback, Object, Object, boolean)} method in the segment when * segment is locked for read, or by * * @param value the value read by create that will be returned */ public void oldValueRead(V value); /** * Check if the existing value should be removed by the * {@link CustomEntryConcurrentHashMap#removeConditionally} method. * * @param value the value to be removed from the map * @param context any context in which this method has been invoked * @param removeParams parameters, if any, to be passed for cleanup of the object */ public boolean doRemoveValue(V value, C context, P removeParams); } /** * Simple adapter class providing empty default implementations for * {@link org.apache.geode.internal.util.concurrent.CustomEntryConcurrentHashMap.MapCallback}. */ public static class MapCallbackAdapter implements MapCallback { /** * @see MapCallback#newValue */ public V newValue(K key, C context, P createParams) { return null; } /** * @see MapCallback#oldValueRead */ public void oldValueRead(V value) {} /** * @see MapCallback#doRemoveValue */ public boolean doRemoveValue(V value, C context, P removeParams) { return true; } } /** * Like {@link #putIfAbsent(Object, Object)} but creates the value only if none present rather * than requiring a passed in pre-created object that may ultimately be thrown away. Also takes * read lock on the segment, if required, to provide better guarantees w.r.t. remove/replace that * checks against old value when the value may be changed structurally by reading (e.g. a list as * value changed after a call to this method). * * @param key key with which the specified value is to be associated * @param valueCreator factory object to create the value to be associated with the specified key, * if required * @param context the context in which this method has been invoked and passed to * valueCreator {@link MapCallback#newValue} method to create the new instance * @param createParams parameters to be passed to the valueCreator * {@link MapCallback#newValue} method to create the new instance * @param lockForRead if passed as true, then the read from the map prior to creation is done * under the segment read lock; this provides better guarantees with respect to other * threads that may be manipulating the value object in place after reading from the map * * @return the previous value associated with the specified key, or the new value obtained by * invoking {@link MapCallback#newValue} if there was no mapping for the key; this is * paired with the segment read lock * * @throws NullPointerException if the specified key or value is null */ public final V create(final K key, final MapCallback valueCreator, final C context, final P createParams, final boolean lockForRead) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).create(key, hash, valueCreator, context, createParams, lockForRead); } /** * Returns the value to which the specified key is mapped, or {@code null} if this map contains no * mapping for the key. * *

* More formally, if this map contains a mapping from a key {@code k} to a value {@code v} such * that {@code key.equals(k)}, then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * *

* This variant locks the segment for reading and if the given {@link MapCallback} is non-null * then its {@link MapCallback#oldValueRead(Object)} method is invoked in the lock. * * @throws NullPointerException if the specified key is null */ public final V get(final Object key, final MapCallback readCallback) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).get(key, hash, readCallback); } /** * Removes the entry for a key only if the given condition ( {@link MapCallback#doRemoveValue} * evaluates to true. This is equivalent to: * *

   * if (map.containsKey(key) && condition.doRemoveInstance(map.get(key), removeParams)) {
   *   map.remove(key);
   *   return true;
   * } else {
   *   return false;
   * }
   * 
* * except that the action is performed atomically. * * @param key key with which the specified value is associated * @param condition {@link MapCallback#doRemoveValue} is invoked and checked inside the segment * lock if removal should be done * @param context the context in which this method has been invoked and passed to * condition {@link MapCallback#doRemoveValue} method to create the new * instance * @param removeParams parameters to be passed to the onSuccess parameter * * @return the previous value associated with key, or null if there was no * mapping for key * * @throws UnsupportedOperationException if the remove operation is not supported by this * map * @throws ClassCastException if the key or value is of an inappropriate type for this map * (optional) * @throws NullPointerException if the specified key or value is null, and this map does not * permit null keys or values (optional) */ public final V removeConditionally(final Object key, final MapCallback condition, final C context, final P removeParams) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, NO_OBJECT_TOKEN, condition, context, removeParams); } // End GemStone addition /** * Copies all of the mappings from the specified map to this one. These mappings replace any * mappings that this map had for any of the keys currently in the specified map. * * @param m mappings to be stored in this map */ @Override public final void putAll(final Map m) { for (final Map.Entry e : m.entrySet()) { put(e.getKey(), e.getValue()); } } /** * Removes the key (and its corresponding value) from this map. This method does nothing if the * key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with key, or null if there was no * mapping for key * @throws NullPointerException if the specified key is null */ @Override public final V remove(final Object key) { // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, NO_OBJECT_TOKEN, null, null, null); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ public final boolean remove(final Object key, final Object value) { if (value == null) { return false; } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).remove(key, hash, value, null, null, null) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ public final boolean replace(final K key, final V oldValue, final V newValue) { if (oldValue == null || newValue == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or null if there was no * mapping for the key * @throws NullPointerException if the specified key or value is null */ public final V replace(final K key, final V value) { if (value == null) { throw new NullPointerException(); } // throws NullPointerException if key null final int hash = this.entryCreator.keyHashCode(key, this.compareValues); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ @Override public final void clear() { ArrayList> entries = null; try { for (int i = 0; i < this.segments.length; ++i) { entries = this.segments[i].clear(entries); } } finally { if (entries != null) { final ArrayList> clearedEntries = entries; final Runnable runnable = new Runnable() { public void run() { for (HashEntry he : clearedEntries) { for (HashEntry p = he; p != null; p = p.getNextEntry()) { synchronized (p) { ((OffHeapRegionEntry) p).release(); } } } } }; boolean submitted = false; InternalDistributedSystem ids = InternalDistributedSystem.getConnectedInstance(); if (ids != null) { try { ids.getDistributionManager().getWaitingThreadPool().execute(runnable); submitted = true; } catch (RejectedExecutionException e) { // fall through with submitted false } catch (CancelException e) { // fall through with submitted false } catch (NullPointerException e) { // fall through with submitted false } } if (!submitted) { String name = this.getClass().getSimpleName() + "@" + this.hashCode() + " Clear Thread"; Thread thread = new Thread(runnable, name); thread.setDaemon(true); thread.start(); } } } } /** * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map, so * changes to the map are reflected in the set, and vice-versa. The set supports element removal, * which removes the corresponding mapping from this map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and clear operations. It * does not support the add or addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will never throw * {@link java.util.ConcurrentModificationException}, and guarantees to traverse elements as they * existed upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ @Override public final Set keySet() { final Set ks = this.keySet; return (ks != null) ? ks : (this.keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. The collection is backed * by the map, so changes to the map are reflected in the collection, and vice-versa. The * collection supports element removal, which removes the corresponding mapping from this map, via * the Iterator.remove, Collection.remove, removeAll, * retainAll, and clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will never throw * {@link java.util.ConcurrentModificationException}, and guarantees to traverse elements as they * existed upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ @Override public final Collection values() { final Collection vs = this.values; return (vs != null) ? vs : (this.values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, * so changes to the map are reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will never throw * {@link java.util.ConcurrentModificationException}, and guarantees to traverse elements as they * existed upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. */ @Override public final Set> entrySet() { final Set> es = this.entrySet; return (es != null) ? es : (this.entrySet = new EntrySet(false)); } // GemStone addition /** * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, * so changes to the map are reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will never throw * {@link java.util.ConcurrentModificationException}, and guarantees to traverse elements as they * existed upon construction of the iterator, and may (but is not guaranteed to) reflect any * modifications subsequent to construction. * *

* This set provides entries that are reused during iteration so caller cannot store the returned * Map.Entry objects. */ public final Set> entrySetWithReusableEntries() { final Set> es = this.reusableEntrySet; return (es != null) ? es : (this.reusableEntrySet = new EntrySet(true)); } // End GemStone addition /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public final Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public final Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int currentSegmentIndex; int nextTableIndex; // GemStone changed HashEntry[] currentTable to currentSegment HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; final ArrayList> currentList; int currentListIndex; HashIterator() { this.currentSegmentIndex = CustomEntryConcurrentHashMap.this.segments.length; this.nextTableIndex = -1; this.currentList = new ArrayList>(5); this.currentListIndex = 0; advance(); } public final boolean hasMoreElements() { return hasNext(); } final void advance() { // GemStone changes BEGIN if (this.currentListIndex < this.currentList.size()) { this.nextEntry = this.currentList.get(this.currentListIndex++); return; } this.nextEntry = null; if (this.nextTableIndex >= 0) { final Segment seg = CustomEntryConcurrentHashMap.this.segments[this.currentSegmentIndex]; final ReentrantReadWriteLock.ReadLock listLock = seg.listUpdateLock.readLock(); listLock.lock(); try { do { if ((this.nextEntry = currentTable[this.nextTableIndex--]) != null) { copyEntriesToList(); return; } } while (this.nextTableIndex >= 0); } finally { listLock.unlock(); } } /* * (original code) if (this.nextEntry != null && (this.nextEntry = * this.nextEntry.getNextEntry()) != null) { return; } * * while (this.nextTableIndex >= 0) { if ((this.nextEntry = * this.currentTable[this.nextTableIndex--]) != null) { return; } } */ // GemStone changes END while (this.currentSegmentIndex > 0) { final Segment seg = CustomEntryConcurrentHashMap.this.segments[--this.currentSegmentIndex]; if (seg.count != 0) { this.currentTable = seg.table; final ReentrantReadWriteLock.ReadLock listLock = seg.listUpdateLock.readLock(); listLock.lock(); try { for (int j = currentTable.length - 1; j >= 0; --j) { if ((this.nextEntry = currentTable[j]) != null) { this.nextTableIndex = j - 1; copyEntriesToList(); return; } } } finally { listLock.unlock(); } } } } // GemStone added the method below /** * Copy the tail of list of current matched entry ({@link #nextEntry}) to a temporary list, so * that the read lock can be released after the copy. * * Read lock on {@link #currentSegmentIndex}'s listUpdateLock should already be acquired. */ private final void copyEntriesToList() { assert segments[currentSegmentIndex] != null : "unexpected null currentSegment"; assert segments[currentSegmentIndex].listUpdateLock.getReadLockCount() > 0; this.currentList.clear(); this.currentListIndex = 0; for (HashEntry p = this.nextEntry.getNextEntry(); p != null; p = p.getNextEntry()) { this.currentList.add(p); } } public final boolean hasNext() { return this.nextEntry != null; } final HashEntry nextEntry() { if (this.nextEntry == null) { throw new NoSuchElementException(); } this.lastReturned = this.nextEntry; advance(); return this.lastReturned; } public final void remove() { if (this.lastReturned == null) { throw new IllegalStateException(); } CustomEntryConcurrentHashMap.this.remove(this.lastReturned.getKey()); this.lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { public K next() { return super.nextEntry().getKey(); } public K nextElement() { return super.nextEntry().getKey(); } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { public V next() { return super.nextEntry().getMapValue(); } public V nextElement() { return super.nextEntry().getMapValue(); } } /** * An Entry maintaining a key and a value. The value may be changed using the setValue * method. This class facilitates the process of building custom map implementations. For example, * it may be convenient to return arrays of SimpleEntry instances in method * Map.entrySet().toArray. */ public class SimpleReusableEntry implements Map.Entry, Serializable { private static final long serialVersionUID = 1591026397367910439L; protected K key; // GemStone change; made non-final to enable reuse private V value; /** * Creates an entry representing a mapping from the specified key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ public SimpleReusableEntry(final K key, final V value) { this.key = key; this.value = value; } /** * Creates an entry representing the same mapping as the specified entry. * * @param entry the entry to copy */ public SimpleReusableEntry(final Entry entry) { this.key = entry.getKey(); this.value = entry.getValue(); } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry */ public final K getKey() { return this.key; } /** * Returns the value corresponding to this entry. * * @return the value corresponding to this entry */ public final V getValue() { return this.value; } /** * Replaces the value corresponding to this entry with the specified value. * * @param value new value to be stored in this entry * @return the old value corresponding to the entry */ public V setValue(final V value) { final V oldValue = this.value; this.value = value; return oldValue; } /** * Compares the specified object with this entry for equality. Returns {@code true} if the given * object is also a map entry and the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping if * *

     * (e1.getKey() == null ? e2.getKey() == null : e1.getKey().equals(e2.getKey()))
     *     && (e1.getValue() == null ? e2.getValue() == null : e1.getValue().equals(e2.getValue()))
     * 
* * This ensures that the {@code equals} method works properly across different implementations * of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map entry * @see #hashCode */ @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry) o; if (CustomEntryConcurrentHashMap.this.compareValues) { return ArrayUtils.objectEquals(this.key, e.getKey()) && ArrayUtils.objectEquals(this.value, e.getValue()); } return this.key == e.getKey() && this.value == e.getValue(); } /** * Returns the hash code value for this map entry. The hash code of a map entry {@code e} is * defined to be: * *
     * (e.getKey() == null ? 0 : e.getKey().hashCode())
     *     ˆ (e.getValue() == null ? 0 : e.getValue().hashCode())
     * 
* * This ensures that {@code e1.equals(e2)} implies that {@code e1.hashCode()==e2.hashCode()} for * any two Entries {@code e1} and {@code e2}, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this map entry * @see #equals */ @Override public int hashCode() { if (CustomEntryConcurrentHashMap.this.compareValues) { return (this.key != null ? this.key.hashCode() : 0) ^ (this.value != null ? this.value.hashCode() : 0); } return System.identityHashCode(this.key) ^ System.identityHashCode(this.value); } /** * Returns a String representation of this map entry. This implementation returns the string * representation of this entry's key followed by the equals character ("=") followed * by the string representation of this entry's value. * * @return a String representation of this map entry */ @Override public String toString() { return this.key + "=" + this.value; } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the underlying * map. */ final class WriteThroughEntry extends SimpleReusableEntry { private static final long serialVersionUID = -6364816773849437756L; /** * Creates an entry representing a mapping from the specified key to the specified value. * * @param key the key represented by this entry * @param value the value represented by this entry */ WriteThroughEntry(final K key, final V value) { super(key, value); } /** * Set our entry's value and write through to the map. The value to return is somewhat arbitrary * here. Since a WriteThroughEntry does not necessarily track asynchronous changes, the most * recent "previous" value could be different from what we return (or could even have been * removed in which case the put will re-establish). We do not and cannot guarantee more. */ @Override public V setValue(final V value) { if (value == null) { throw new NullPointerException(); } final V v = super.setValue(value); CustomEntryConcurrentHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator> { // GemStone change // added possibility to reuse a single Map.Entry for entire iteration final WriteThroughEntry reusableEntry; EntryIterator(final WriteThroughEntry reusableEntry) { this.reusableEntry = reusableEntry; } public Map.Entry next() { final HashEntry e = super.nextEntry(); if (this.reusableEntry != null) { this.reusableEntry.key = e.getKey(); this.reusableEntry.setValue(e.getMapValue()); return this.reusableEntry; } return new WriteThroughEntry(e.getKey(), e.getMapValue()); } // End GemStone change } final class KeySet extends AbstractSet { @Override public Iterator iterator() { return new KeyIterator(); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public boolean contains(final Object o) { return CustomEntryConcurrentHashMap.this.containsKey(o); } @Override public boolean remove(final Object o) { return CustomEntryConcurrentHashMap.this.remove(o) != null; } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } final class Values extends AbstractCollection { @Override public Iterator iterator() { return new ValueIterator(); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public boolean contains(final Object o) { return CustomEntryConcurrentHashMap.this.containsValue(o); } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { // GemStone change // added possibility to reuse a single Map.Entry for entire iteration final WriteThroughEntry reusableEntry; EntrySet(final boolean useReusableEntry) { if (useReusableEntry) { this.reusableEntry = new WriteThroughEntry(null, null); } else { this.reusableEntry = null; } } @Override public Iterator> iterator() { return new EntryIterator(this.reusableEntry); } // End GemStone change @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry) o; final V v = CustomEntryConcurrentHashMap.this.get(e.getKey()); if (CustomEntryConcurrentHashMap.this.compareValues) { return v != null && v.equals(e.getValue()); } return v == e.getValue(); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry) o; return CustomEntryConcurrentHashMap.this.remove(e.getKey(), e.getValue()); } @Override public int size() { return CustomEntryConcurrentHashMap.this.size(); } @Override public void clear() { CustomEntryConcurrentHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentHashMap instance to a stream (i.e., serialize it). * * @param s the stream * @serialData the key (Object) and value (Object) for each key-value mapping, followed by a null * pair. The key-value mappings are emitted in no particular order. */ private void writeObject(final java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < this.segments.length; ++k) { final Segment seg = this.segments[k]; final ReentrantReadWriteLock.ReadLock readLock = seg.readLock(); readLock.lock(); try { final HashEntry[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry e = tab[i]; e != null; e = e.getNextEntry()) { s.writeObject(e.getKey()); s.writeObject(e.getMapValue()); } } } finally { readLock.unlock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the ConcurrentHashMap instance from a stream (i.e., deserialize it). * * @param s the stream */ @SuppressWarnings("unchecked") private void readObject(final java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < this.segments.length; ++i) { this.segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { final K key = (K) s.readObject(); final V value = (V) s.readObject(); if (key == null) { break; } put(key, value); } } public long estimateMemoryOverhead(SingleObjectSizer sizer) { long totalOverhead = sizer.sizeof(this); for (int i = 0; i < this.segments.length; ++i) { final Segment seg = this.segments[i]; totalOverhead += sizer.sizeof(seg); } return totalOverhead; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy