org.apache.giraph.examples.RandomWalkComputation Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.giraph.examples;
import org.apache.giraph.graph.BasicComputation;
import org.apache.giraph.edge.Edge;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Writable;
import java.io.IOException;
/**
* Base class for executing a random walk on a graph
*
* @param edge type
*/
public abstract class RandomWalkComputation
extends BasicComputation {
/** Configuration parameter for the number of supersteps to execute */
static final String MAX_SUPERSTEPS = RandomWalkComputation.class.getName() +
".maxSupersteps";
/** Configuration parameter for the teleportation probability */
static final String TELEPORTATION_PROBABILITY = RandomWalkComputation.class
.getName() + ".teleportationProbability";
/** Name of aggregator for the probability assigned to dangling vertices */
static final String CUMULATIVE_DANGLING_PROBABILITY =
RandomWalkComputation.class.getName() + ".cumulativeDanglingProbability";
/** Name of aggregator for the probability assigned to all vertices */
static final String CUMULATIVE_PROBABILITY = RandomWalkComputation.class
.getName() + ".cumulativeProbability";
/** Name of aggregator for the number of dangling vertices */
static final String NUM_DANGLING_VERTICES = RandomWalkComputation.class
.getName() + ".numDanglingVertices";
/** Name of aggregator for the L1 norm of the probability difference, used
* for convergence detection */
static final String L1_NORM_OF_PROBABILITY_DIFFERENCE =
RandomWalkComputation.class.getName() + ".l1NormOfProbabilityDifference";
/** Reusable {@link DoubleWritable} instance to avoid object instantiation */
private final DoubleWritable doubleWritable = new DoubleWritable();
/** Reusable {@link LongWritable} for counting dangling vertices */
private final LongWritable one = new LongWritable(1);
/**
* Compute an initial probability value for the vertex. Per default,
* we start with a uniform distribution.
* @return The initial probability value.
*/
protected double initialProbability() {
return 1.0 / getTotalNumVertices();
}
/**
* Compute the probability of transitioning to a neighbor vertex
* @param vertex Vertex
* @param stateProbability current steady state probability of the vertex
* @param edge edge to neighbor
* @return the probability of transitioning to a neighbor vertex
*/
protected abstract double transitionProbability(
Vertex vertex,
double stateProbability,
Edge edge);
/**
* Perform a single step of a random walk computation.
* @param vertex Vertex
* @param messages Messages received in the previous step.
* @param teleportationProbability Probability of teleporting to another
* vertex.
* @return The new probability value.
*/
protected abstract double recompute(
Vertex vertex,
Iterable messages,
double teleportationProbability);
/**
* Returns the cumulative probability from dangling vertices.
* @return The cumulative probability from dangling vertices.
*/
protected double getDanglingProbability() {
return this.getAggregatedValue(
RandomWalkComputation.CUMULATIVE_DANGLING_PROBABILITY).get();
}
/**
* Returns the cumulative probability from dangling vertices.
* @return The cumulative probability from dangling vertices.
*/
protected double getPreviousCumulativeProbability() {
return this.getAggregatedValue(
RandomWalkComputation.CUMULATIVE_PROBABILITY).get();
}
@Override
public void compute(
Vertex vertex,
Iterable messages) throws IOException {
double stateProbability;
if (getSuperstep() > 0) {
double previousStateProbability = vertex.getValue().get();
stateProbability =
recompute(vertex, messages, teleportationProbability());
// Important: rescale for numerical stability
stateProbability /= getPreviousCumulativeProbability();
doubleWritable.set(Math.abs(stateProbability - previousStateProbability));
aggregate(L1_NORM_OF_PROBABILITY_DIFFERENCE, doubleWritable);
} else {
stateProbability = initialProbability();
}
vertex.getValue().set(stateProbability);
aggregate(CUMULATIVE_PROBABILITY, vertex.getValue());
// Compute dangling node contribution for next superstep
if (vertex.getNumEdges() == 0) {
aggregate(NUM_DANGLING_VERTICES, one);
aggregate(CUMULATIVE_DANGLING_PROBABILITY, vertex.getValue());
}
if (getSuperstep() < maxSupersteps()) {
for (Edge edge : vertex.getEdges()) {
double transitionProbability =
transitionProbability(vertex, stateProbability, edge);
doubleWritable.set(transitionProbability);
sendMessage(edge.getTargetVertexId(), doubleWritable);
}
} else {
vertex.voteToHalt();
}
}
/**
* Reads the number of supersteps to execute from the configuration
* @return number of supersteps to execute
*/
private int maxSupersteps() {
return ((RandomWalkWorkerContext) getWorkerContext()).getMaxSupersteps();
}
/**
* Reads the teleportation probability from the configuration
* @return teleportation probability
*/
protected double teleportationProbability() {
return ((RandomWalkWorkerContext) getWorkerContext())
.getTeleportationProbability();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy