All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.groovy.util.concurrent.concurrentlinkedhashmap.ConcurrentLinkedHashMap Maven / Gradle / Ivy

There is a newer version: 5.0.0-alpha-11
Show newest version
/*
 * Copyright 2010 Google Inc. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.groovy.util.concurrent.concurrentlinkedhashmap;

import org.apache.groovy.util.ObjectHolder;

import javax.annotation.concurrent.GuardedBy;
import javax.annotation.concurrent.Immutable;
import javax.annotation.concurrent.ThreadSafe;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractQueue;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Function;

import static java.util.Collections.unmodifiableMap;
import static java.util.Collections.unmodifiableSet;
import static org.apache.groovy.util.concurrent.concurrentlinkedhashmap.ConcurrentLinkedHashMap.DrainStatus.IDLE;
import static org.apache.groovy.util.concurrent.concurrentlinkedhashmap.ConcurrentLinkedHashMap.DrainStatus.PROCESSING;
import static org.apache.groovy.util.concurrent.concurrentlinkedhashmap.ConcurrentLinkedHashMap.DrainStatus.REQUIRED;

/**
 * A hash table supporting full concurrency of retrievals, adjustable expected
 * concurrency for updates, and a maximum capacity to bound the map by. This
 * implementation differs from {@link ConcurrentHashMap} in that it maintains a
 * page replacement algorithm that is used to evict an entry when the map has
 * exceeded its capacity. Unlike the Java Collections Framework, this
 * map does not have a publicly visible constructor and instances are created
 * through a {@link Builder}.
 * 

* An entry is evicted from the map when the weighted capacity exceeds * its maximum weighted capacity threshold. A {@link EntryWeigher} * determines how many units of capacity that an entry consumes. The default * weigher assigns each value a weight of 1 to bound the map by the * total number of key-value pairs. A map that holds collections may choose to * weigh values by the number of elements in the collection and bound the map * by the total number of elements that it contains. A change to a value that * modifies its weight requires that an update operation is performed on the * map. *

* An {@link EvictionListener} may be supplied for notification when an entry * is evicted from the map. This listener is invoked on a caller's thread and * will not block other threads from operating on the map. An implementation * should be aware that the caller's thread will not expect long execution * times or failures as a side effect of the listener being notified. Execution * safety and a fast turn around time can be achieved by performing the * operation asynchronously, such as by submitting a task to an * {@link java.util.concurrent.ExecutorService}. *

* The concurrency level determines the number of threads that can * concurrently modify the table. Using a significantly higher or lower value * than needed can waste space or lead to thread contention, but an estimate * within an order of magnitude of the ideal value does not usually have a * noticeable impact. Because placement in hash tables is essentially random, * the actual concurrency will vary. *

* This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} * interfaces. *

* Like {@link java.util.Hashtable} but unlike {@link HashMap}, this class * does not allow null to be used as a key or value. Unlike * {@link LinkedHashMap}, this class does not provide * predictable iteration order. A snapshot of the keys and entries may be * obtained in ascending and descending order of retention. * * @param the type of keys maintained by this map * @param the type of mapped values * @see * http://code.google.com/p/concurrentlinkedhashmap/ */ @ThreadSafe public final class ConcurrentLinkedHashMap extends AbstractMap implements ConcurrentMap, Serializable { /* * This class performs a best-effort bounding of a ConcurrentHashMap using a * page-replacement algorithm to determine which entries to evict when the * capacity is exceeded. * * The page replacement algorithm's data structures are kept eventually * consistent with the map. An update to the map and recording of reads may * not be immediately reflected on the algorithm's data structures. These * structures are guarded by a lock and operations are applied in batches to * avoid lock contention. The penalty of applying the batches is spread across * threads so that the amortized cost is slightly higher than performing just * the ConcurrentHashMap operation. * * A memento of the reads and writes that were performed on the map are * recorded in buffers. These buffers are drained at the first opportunity * after a write or when the read buffer exceeds a threshold size. The reads * are recorded in a lossy buffer, allowing the reordering operations to be * discarded if the draining process cannot keep up. Due to the concurrent * nature of the read and write operations a strict policy ordering is not * possible, but is observably strict when single threaded. * * Due to a lack of a strict ordering guarantee, a task can be executed * out-of-order, such as a removal followed by its addition. The state of the * entry is encoded within the value's weight. * * Alive: The entry is in both the hash-table and the page replacement policy. * This is represented by a positive weight. * * Retired: The entry is not in the hash-table and is pending removal from the * page replacement policy. This is represented by a negative weight. * * Dead: The entry is not in the hash-table and is not in the page replacement * policy. This is represented by a weight of zero. * * The Least Recently Used page replacement algorithm was chosen due to its * simplicity, high hit rate, and ability to be implemented with O(1) time * complexity. */ /** The number of CPUs */ static final int NCPU = Runtime.getRuntime().availableProcessors(); /** The maximum weighted capacity of the map. */ static final long MAXIMUM_CAPACITY = Long.MAX_VALUE - Integer.MAX_VALUE; /** The number of read buffers to use. */ static final int NUMBER_OF_READ_BUFFERS = ceilingNextPowerOfTwo(NCPU); /** Mask value for indexing into the read buffers. */ static final int READ_BUFFERS_MASK = NUMBER_OF_READ_BUFFERS - 1; /** The number of pending read operations before attempting to drain. */ static final int READ_BUFFER_THRESHOLD = 32; /** The maximum number of read operations to perform per amortized drain. */ static final int READ_BUFFER_DRAIN_THRESHOLD = 2 * READ_BUFFER_THRESHOLD; /** The maximum number of pending reads per buffer. */ static final int READ_BUFFER_SIZE = 2 * READ_BUFFER_DRAIN_THRESHOLD; /** Mask value for indexing into the read buffer. */ static final int READ_BUFFER_INDEX_MASK = READ_BUFFER_SIZE - 1; /** The maximum number of write operations to perform per amortized drain. */ static final int WRITE_BUFFER_DRAIN_THRESHOLD = 16; /** A queue that discards all entries. */ static final Queue DISCARDING_QUEUE = new DiscardingQueue(); static int ceilingNextPowerOfTwo(int x) { // From Hacker's Delight, Chapter 3, Harry S. Warren Jr. return 1 << (Integer.SIZE - Integer.numberOfLeadingZeros(x - 1)); } // The backing data store holding the key-value associations final ConcurrentMap> data; final int concurrencyLevel; // These fields provide support to bound the map by a maximum capacity @GuardedBy("evictionLock") final long[] readBufferReadCount; @GuardedBy("evictionLock") final LinkedDeque> evictionDeque; @GuardedBy("evictionLock") // must write under lock final AtomicLong weightedSize; @GuardedBy("evictionLock") // must write under lock final AtomicLong capacity; final Lock evictionLock; final Queue writeBuffer; final AtomicLong[] readBufferWriteCount; final AtomicLong[] readBufferDrainAtWriteCount; final AtomicReference>[][] readBuffers; final AtomicReference drainStatus; final EntryWeigher weigher; // These fields provide support for notifying a listener. final Queue> pendingNotifications; final EvictionListener listener; transient Set keySet; transient Collection values; transient Set> entrySet; /** * Creates an instance based on the builder's configuration. */ @SuppressWarnings({"unchecked", "cast"}) private ConcurrentLinkedHashMap(Builder builder) { // The data store and its maximum capacity concurrencyLevel = builder.concurrencyLevel; capacity = new AtomicLong(Math.min(builder.capacity, MAXIMUM_CAPACITY)); data = new ConcurrentHashMap<>(builder.initialCapacity, 0.75f, concurrencyLevel); // The eviction support weigher = builder.weigher; evictionLock = new ReentrantLock(); weightedSize = new AtomicLong(); evictionDeque = new LinkedDeque<>(); writeBuffer = new ConcurrentLinkedQueue<>(); drainStatus = new AtomicReference<>(IDLE); readBufferReadCount = new long[NUMBER_OF_READ_BUFFERS]; readBufferWriteCount = new AtomicLong[NUMBER_OF_READ_BUFFERS]; readBufferDrainAtWriteCount = new AtomicLong[NUMBER_OF_READ_BUFFERS]; readBuffers = new AtomicReference[NUMBER_OF_READ_BUFFERS][READ_BUFFER_SIZE]; for (int i = 0; i < NUMBER_OF_READ_BUFFERS; i++) { readBufferWriteCount[i] = new AtomicLong(); readBufferDrainAtWriteCount[i] = new AtomicLong(); readBuffers[i] = new AtomicReference[READ_BUFFER_SIZE]; for (int j = 0; j < READ_BUFFER_SIZE; j++) { readBuffers[i][j] = new AtomicReference<>(); } } // The notification queue and listener listener = builder.listener; pendingNotifications = (listener == DiscardingListener.INSTANCE) ? (Queue>) DISCARDING_QUEUE : new ConcurrentLinkedQueue<>(); } /** Ensures that the object is not null. */ static void checkNotNull(Object o) { if (o == null) { throw new NullPointerException(); } } /** Ensures that the argument expression is true. */ static void checkArgument(boolean expression) { if (!expression) { throw new IllegalArgumentException(); } } /** Ensures that the state expression is true. */ static void checkState(boolean expression) { if (!expression) { throw new IllegalStateException(); } } /* ---------------- Eviction Support -------------- */ /** * Retrieves the maximum weighted capacity of the map. * * @return the maximum weighted capacity */ public long capacity() { return capacity.get(); } /** * Sets the maximum weighted capacity of the map and eagerly evicts entries * until it shrinks to the appropriate size. * * @param capacity the maximum weighted capacity of the map * @throws IllegalArgumentException if the capacity is negative */ public void setCapacity(long capacity) { checkArgument(capacity >= 0); evictionLock.lock(); try { this.capacity.lazySet(Math.min(capacity, MAXIMUM_CAPACITY)); drainBuffers(); evict(); } finally { evictionLock.unlock(); } notifyListener(); } /** Determines whether the map has exceeded its capacity. */ @GuardedBy("evictionLock") boolean hasOverflowed() { return weightedSize.get() > capacity.get(); } /** * Evicts entries from the map while it exceeds the capacity and appends * evicted entries to the notification queue for processing. */ @GuardedBy("evictionLock") void evict() { // Attempts to evict entries from the map if it exceeds the maximum // capacity. If the eviction fails due to a concurrent removal of the // victim, that removal may cancel out the addition that triggered this // eviction. The victim is eagerly unlinked before the removal task so // that if an eviction is still required then a new victim will be chosen // for removal. while (hasOverflowed()) { final Node node = evictionDeque.poll(); // If weighted values are used, then the pending operations will adjust // the size to reflect the correct weight if (node == null) { return; } // Notify the listener only if the entry was evicted if (data.remove(node.key, node)) { pendingNotifications.add(node); } makeDead(node); } } /** * Performs the post-processing work required after a read. * * @param node the entry in the page replacement policy */ void afterRead(Node node) { final int bufferIndex = readBufferIndex(); final long writeCount = recordRead(bufferIndex, node); drainOnReadIfNeeded(bufferIndex, writeCount); notifyListener(); } /** Returns the index to the read buffer to record into. */ static int readBufferIndex() { // A buffer is chosen by the thread's id so that tasks are distributed in a // pseudo evenly manner. This helps avoid hot entries causing contention // due to other threads trying to append to the same buffer. return ((int) Thread.currentThread().getId()) & READ_BUFFERS_MASK; } /** * Records a read in the buffer and return its write count. * * @param bufferIndex the index to the chosen read buffer * @param node the entry in the page replacement policy * @return the number of writes on the chosen read buffer */ long recordRead(int bufferIndex, Node node) { // The location in the buffer is chosen in a racy fashion as the increment // is not atomic with the insertion. This means that concurrent reads can // overlap and overwrite one another, resulting in a lossy buffer. final AtomicLong counter = readBufferWriteCount[bufferIndex]; final long writeCount = counter.get(); counter.lazySet(writeCount + 1); final int index = (int) (writeCount & READ_BUFFER_INDEX_MASK); readBuffers[bufferIndex][index].lazySet(node); return writeCount; } /** * Attempts to drain the buffers if it is determined to be needed when * post-processing a read. * * @param bufferIndex the index to the chosen read buffer * @param writeCount the number of writes on the chosen read buffer */ void drainOnReadIfNeeded(int bufferIndex, long writeCount) { final long pending = (writeCount - readBufferDrainAtWriteCount[bufferIndex].get()); final boolean delayable = (pending < READ_BUFFER_THRESHOLD); final DrainStatus status = drainStatus.get(); if (status.shouldDrainBuffers(delayable)) { tryToDrainBuffers(); } } /** * Performs the post-processing work required after a write. * * @param task the pending operation to be applied */ void afterWrite(Runnable task) { writeBuffer.add(task); drainStatus.lazySet(REQUIRED); tryToDrainBuffers(); notifyListener(); } /** * Attempts to acquire the eviction lock and apply the pending operations, up * to the amortized threshold, to the page replacement policy. */ void tryToDrainBuffers() { if (evictionLock.tryLock()) { try { drainStatus.lazySet(PROCESSING); drainBuffers(); } finally { drainStatus.compareAndSet(PROCESSING, IDLE); evictionLock.unlock(); } } } /** Drains the read and write buffers up to an amortized threshold. */ @GuardedBy("evictionLock") void drainBuffers() { drainReadBuffers(); drainWriteBuffer(); } /** Drains the read buffers, each up to an amortized threshold. */ @GuardedBy("evictionLock") void drainReadBuffers() { final int start = (int) Thread.currentThread().getId(); final int end = start + NUMBER_OF_READ_BUFFERS; for (int i = start; i < end; i++) { drainReadBuffer(i & READ_BUFFERS_MASK); } } /** Drains the read buffer up to an amortized threshold. */ @GuardedBy("evictionLock") void drainReadBuffer(int bufferIndex) { final long writeCount = readBufferWriteCount[bufferIndex].get(); for (int i = 0; i < READ_BUFFER_DRAIN_THRESHOLD; i++) { final int index = (int) (readBufferReadCount[bufferIndex] & READ_BUFFER_INDEX_MASK); final AtomicReference> slot = readBuffers[bufferIndex][index]; final Node node = slot.get(); if (node == null) { break; } slot.lazySet(null); applyRead(node); readBufferReadCount[bufferIndex]++; } readBufferDrainAtWriteCount[bufferIndex].lazySet(writeCount); } /** Updates the node's location in the page replacement policy. */ @GuardedBy("evictionLock") void applyRead(Node node) { // An entry may be scheduled for reordering despite having been removed. // This can occur when the entry was concurrently read while a writer was // removing it. If the entry is no longer linked then it does not need to // be processed. if (evictionDeque.contains(node)) { evictionDeque.moveToBack(node); } } /** Drains the read buffer up to an amortized threshold. */ @GuardedBy("evictionLock") void drainWriteBuffer() { for (int i = 0; i < WRITE_BUFFER_DRAIN_THRESHOLD; i++) { final Runnable task = writeBuffer.poll(); if (task == null) { break; } task.run(); } } /** * Attempts to transition the node from the alive state to the * retired state. * * @param node the entry in the page replacement policy * @param expect the expected weighted value * @return if successful */ boolean tryToRetire(Node node, WeightedValue expect) { if (expect.isAlive()) { final WeightedValue retired = new WeightedValue<>(expect.value, -expect.weight); return node.compareAndSet(expect, retired); } return false; } /** * Atomically transitions the node from the alive state to the * retired state, if a valid transition. * * @param node the entry in the page replacement policy */ void makeRetired(Node node) { for (;;) { final WeightedValue current = node.get(); if (!current.isAlive()) { return; } final WeightedValue retired = new WeightedValue<>(current.value, -current.weight); if (node.compareAndSet(current, retired)) { return; } } } /** * Atomically transitions the node to the dead state and decrements * the weightedSize. * * @param node the entry in the page replacement policy */ @GuardedBy("evictionLock") void makeDead(Node node) { for (;;) { WeightedValue current = node.get(); WeightedValue dead = new WeightedValue<>(current.value, 0); if (node.compareAndSet(current, dead)) { weightedSize.lazySet(weightedSize.get() - Math.abs(current.weight)); return; } } } /** Notifies the listener of entries that were evicted. */ void notifyListener() { Node node; while ((node = pendingNotifications.poll()) != null) { listener.onEviction(node.key, node.getValue()); } } /** Adds the node to the page replacement policy. */ final class AddTask implements Runnable { final Node node; final int weight; AddTask(Node node, int weight) { this.weight = weight; this.node = node; } @Override @GuardedBy("evictionLock") public void run() { weightedSize.lazySet(weightedSize.get() + weight); // ignore out-of-order write operations if (node.get().isAlive()) { evictionDeque.add(node); evict(); } } } /** Removes a node from the page replacement policy. */ final class RemovalTask implements Runnable { final Node node; RemovalTask(Node node) { this.node = node; } @Override @GuardedBy("evictionLock") public void run() { // add may not have been processed yet evictionDeque.remove(node); makeDead(node); } } /** Updates the weighted size and evicts an entry on overflow. */ final class UpdateTask implements Runnable { final int weightDifference; final Node node; public UpdateTask(Node node, int weightDifference) { this.weightDifference = weightDifference; this.node = node; } @Override @GuardedBy("evictionLock") public void run() { weightedSize.lazySet(weightedSize.get() + weightDifference); applyRead(node); evict(); } } /* ---------------- Concurrent Map Support -------------- */ @Override public boolean isEmpty() { return data.isEmpty(); } @Override public int size() { return data.size(); } /** * Returns the weighted size of this map. * * @return the combined weight of the values in this map */ public long weightedSize() { return Math.max(0, weightedSize.get()); } @Override public void clear() { evictionLock.lock(); try { // Discard all entries Node node; while ((node = evictionDeque.poll()) != null) { data.remove(node.key, node); makeDead(node); } // Discard all pending reads for (AtomicReference>[] buffer : readBuffers) { for (AtomicReference> slot : buffer) { slot.lazySet(null); } } // Apply all pending writes Runnable task; while ((task = writeBuffer.poll()) != null) { task.run(); } } finally { evictionLock.unlock(); } } @Override public boolean containsKey(Object key) { return data.containsKey(key); } @Override public boolean containsValue(Object value) { checkNotNull(value); for (Node node : data.values()) { if (node.getValue().equals(value)) { return true; } } return false; } @Override public V get(Object key) { final Node node = data.get(key); if (node == null) { return null; } afterRead(node); return node.getValue(); } /** * Returns the value to which the specified key is mapped, or {@code null} * if this map contains no mapping for the key. This method differs from * {@link #get(Object)} in that it does not record the operation with the * page replacement policy. * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws NullPointerException if the specified key is null */ public V getQuietly(Object key) { final Node node = data.get(key); return (node == null) ? null : node.getValue(); } @Override public V put(K key, V value) { return put(key, value, false); } @Override public V putIfAbsent(K key, V value) { return put(key, value, true); } /** * Adds a node to the list and the data store. If an existing node is found, * then its value is updated if allowed. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @param onlyIfAbsent a write is performed only if the key is not already * associated with a value * @return the prior value in the data store or null if no mapping was found */ V put(K key, V value, boolean onlyIfAbsent) { checkNotNull(key); checkNotNull(value); final int weight = weigher.weightOf(key, value); final WeightedValue weightedValue = new WeightedValue<>(value, weight); final Node node = new Node<>(key, weightedValue); for (;;) { final Node prior = data.putIfAbsent(node.key, node); if (prior == null) { afterWrite(new AddTask(node, weight)); return null; } else if (onlyIfAbsent) { afterRead(prior); return prior.getValue(); } for (;;) { final WeightedValue oldWeightedValue = prior.get(); if (!oldWeightedValue.isAlive()) { break; } if (prior.compareAndSet(oldWeightedValue, weightedValue)) { final int weightedDifference = weight - oldWeightedValue.weight; if (weightedDifference == 0) { afterRead(prior); } else { afterWrite(new UpdateTask(prior, weightedDifference)); } return oldWeightedValue.value; } } } } /** * If the specified key is not already associated with a value, * attempts to compute its value using the given mapping function * and enters it into this map unless {@code null}. The entire * method invocation is performed atomically, so the function is * applied at most once per key. Some attempted update operations * on this map by other threads may be blocked while computation * is in progress, so the computation should be short and simple, * and must not attempt to update any other mappings of this map. * * @param key key with which the specified value is to be associated * @param mappingFunction the function to compute a value * @return the current (existing or computed) value associated with * the specified key, or null if the computed value is null * @throws NullPointerException if the specified key or mappingFunction * is null * @throws IllegalStateException if the computation detectably * attempts a recursive update to this map that would * otherwise never complete * @throws RuntimeException or Error if the mappingFunction does so, * in which case the mapping is left unestablished */ @Override public V computeIfAbsent(K key, Function mappingFunction) { return compute(key, mappingFunction, true); } V compute(final K key, final Function mappingFunction, boolean onlyIfAbsent) { checkNotNull(key); checkNotNull(mappingFunction); final ObjectHolder> objectHolder = new ObjectHolder<>(); for (;;) { Function> f = k -> { final V value = mappingFunction.apply(key); checkNotNull(value); final int weight = weigher.weightOf(key, value); final WeightedValue weightedValue = new WeightedValue<>(value, weight); final Node node = new Node<>(key, weightedValue); objectHolder.setObject(node); return node; }; Node prior = data.computeIfAbsent(key, f); Node node = objectHolder.getObject(); if (null == node) { // the entry is present V value = prior.getValue(); final int weight = weigher.weightOf(key, value); final WeightedValue weightedValue = new WeightedValue<>(value, weight); node = new Node<>(key, weightedValue); } else { // the return value of `computeIfAbsent` is different from the one of `putIfAbsent`. // if the key is absent in map, the return value of `computeIfAbsent` is the newly computed value, but `putIfAbsent` return null. // prior should keep the value with the same meaning of the return value of `putIfAbsent`, so reset it as null here. prior = null; } final WeightedValue weightedValue = node.weightedValue; final int weight = weightedValue.weight; if (prior == null) { afterWrite(new AddTask(node, weight)); return weightedValue.value; } else if (onlyIfAbsent) { afterRead(prior); return prior.getValue(); } for (;;) { final WeightedValue oldWeightedValue = prior.get(); if (!oldWeightedValue.isAlive()) { break; } if (prior.compareAndSet(oldWeightedValue, weightedValue)) { final int weightedDifference = weight - oldWeightedValue.weight; if (weightedDifference == 0) { afterRead(prior); } else { afterWrite(new UpdateTask(prior, weightedDifference)); } return oldWeightedValue.value; } } } } @Override public V remove(Object key) { final Node node = data.remove(key); if (node == null) { return null; } makeRetired(node); afterWrite(new RemovalTask(node)); return node.getValue(); } @Override public boolean remove(Object key, Object value) { final Node node = data.get(key); if ((node == null) || (value == null)) { return false; } WeightedValue weightedValue = node.get(); for (;;) { if (weightedValue.contains(value)) { if (tryToRetire(node, weightedValue)) { if (data.remove(key, node)) { afterWrite(new RemovalTask(node)); return true; } } else { weightedValue = node.get(); if (weightedValue.isAlive()) { // retry as an intermediate update may have replaced the value with // an equal instance that has a different reference identity continue; } } } return false; } } @Override public V replace(K key, V value) { checkNotNull(key); checkNotNull(value); final int weight = weigher.weightOf(key, value); final WeightedValue weightedValue = new WeightedValue<>(value, weight); final Node node = data.get(key); if (node == null) { return null; } for (;;) { final WeightedValue oldWeightedValue = node.get(); if (!oldWeightedValue.isAlive()) { return null; } if (node.compareAndSet(oldWeightedValue, weightedValue)) { final int weightedDifference = weight - oldWeightedValue.weight; if (weightedDifference == 0) { afterRead(node); } else { afterWrite(new UpdateTask(node, weightedDifference)); } return oldWeightedValue.value; } } } @Override public boolean replace(K key, V oldValue, V newValue) { checkNotNull(key); checkNotNull(oldValue); checkNotNull(newValue); final int weight = weigher.weightOf(key, newValue); final WeightedValue newWeightedValue = new WeightedValue<>(newValue, weight); final Node node = data.get(key); if (node == null) { return false; } for (;;) { final WeightedValue weightedValue = node.get(); if (!weightedValue.isAlive() || !weightedValue.contains(oldValue)) { return false; } if (node.compareAndSet(weightedValue, newWeightedValue)) { final int weightedDifference = weight - weightedValue.weight; if (weightedDifference == 0) { afterRead(node); } else { afterWrite(new UpdateTask(node, weightedDifference)); } return true; } } } @Override public Set keySet() { final Set ks = keySet; return (ks == null) ? (keySet = new KeySet()) : ks; } /** * Returns a unmodifiable snapshot {@link Set} view of the keys contained in * this map. The set's iterator returns the keys whose order of iteration is * the ascending order in which its entries are considered eligible for * retention, from the least-likely to be retained to the most-likely. *

* Beware that, unlike in {@link #keySet()}, obtaining the set is NOT * a constant-time operation. Because of the asynchronous nature of the page * replacement policy, determining the retention ordering requires a traversal * of the keys. * * @return an ascending snapshot view of the keys in this map */ public Set ascendingKeySet() { return ascendingKeySetWithLimit(Integer.MAX_VALUE); } /** * Returns an unmodifiable snapshot {@link Set} view of the keys contained in * this map. The set's iterator returns the keys whose order of iteration is * the ascending order in which its entries are considered eligible for * retention, from the least-likely to be retained to the most-likely. *

* Beware that, unlike in {@link #keySet()}, obtaining the set is NOT * a constant-time operation. Because of the asynchronous nature of the page * replacement policy, determining the retention ordering requires a traversal * of the keys. * * @param limit the maximum size of the returned set * @return a ascending snapshot view of the keys in this map * @throws IllegalArgumentException if the limit is negative */ public Set ascendingKeySetWithLimit(int limit) { return orderedKeySet(true, limit); } /** * Returns an unmodifiable snapshot {@link Set} view of the keys contained in * this map. The set's iterator returns the keys whose order of iteration is * the descending order in which its entries are considered eligible for * retention, from the most-likely to be retained to the least-likely. *

* Beware that, unlike in {@link #keySet()}, obtaining the set is NOT * a constant-time operation. Because of the asynchronous nature of the page * replacement policy, determining the retention ordering requires a traversal * of the keys. * * @return a descending snapshot view of the keys in this map */ public Set descendingKeySet() { return descendingKeySetWithLimit(Integer.MAX_VALUE); } /** * Returns an unmodifiable snapshot {@link Set} view of the keys contained in * this map. The set's iterator returns the keys whose order of iteration is * the descending order in which its entries are considered eligible for * retention, from the most-likely to be retained to the least-likely. *

* Beware that, unlike in {@link #keySet()}, obtaining the set is NOT * a constant-time operation. Because of the asynchronous nature of the page * replacement policy, determining the retention ordering requires a traversal * of the keys. * * @param limit the maximum size of the returned set * @return a descending snapshot view of the keys in this map * @throws IllegalArgumentException if the limit is negative */ public Set descendingKeySetWithLimit(int limit) { return orderedKeySet(false, limit); } Set orderedKeySet(boolean ascending, int limit) { checkArgument(limit >= 0); evictionLock.lock(); try { drainBuffers(); final int initialCapacity = (weigher == Weighers.entrySingleton()) ? Math.min(limit, (int) weightedSize()) : 16; final Set keys = new LinkedHashSet<>(initialCapacity); final Iterator> iterator = ascending ? evictionDeque.iterator() : evictionDeque.descendingIterator(); while (iterator.hasNext() && (limit > keys.size())) { keys.add(iterator.next().key); } return unmodifiableSet(keys); } finally { evictionLock.unlock(); } } @Override public Collection values() { final Collection vs = values; return (vs == null) ? (values = new Values()) : vs; } @Override public Set> entrySet() { final Set> es = entrySet; return (es == null) ? (entrySet = new EntrySet()) : es; } /** * Returns an unmodifiable snapshot {@link Map} view of the mappings contained * in this map. The map's collections return the mappings whose order of * iteration is the ascending order in which its entries are considered * eligible for retention, from the least-likely to be retained to the * most-likely. *

* Beware that obtaining the mappings is NOT a constant-time * operation. Because of the asynchronous nature of the page replacement * policy, determining the retention ordering requires a traversal of the * entries. * * @return a ascending snapshot view of this map */ public Map ascendingMap() { return ascendingMapWithLimit(Integer.MAX_VALUE); } /** * Returns an unmodifiable snapshot {@link Map} view of the mappings contained * in this map. The map's collections return the mappings whose order of * iteration is the ascending order in which its entries are considered * eligible for retention, from the least-likely to be retained to the * most-likely. *

* Beware that obtaining the mappings is NOT a constant-time * operation. Because of the asynchronous nature of the page replacement * policy, determining the retention ordering requires a traversal of the * entries. * * @param limit the maximum size of the returned map * @return a ascending snapshot view of this map * @throws IllegalArgumentException if the limit is negative */ public Map ascendingMapWithLimit(int limit) { return orderedMap(true, limit); } /** * Returns an unmodifiable snapshot {@link Map} view of the mappings contained * in this map. The map's collections return the mappings whose order of * iteration is the descending order in which its entries are considered * eligible for retention, from the most-likely to be retained to the * least-likely. *

* Beware that obtaining the mappings is NOT a constant-time * operation. Because of the asynchronous nature of the page replacement * policy, determining the retention ordering requires a traversal of the * entries. * * @return a descending snapshot view of this map */ public Map descendingMap() { return descendingMapWithLimit(Integer.MAX_VALUE); } /** * Returns an unmodifiable snapshot {@link Map} view of the mappings contained * in this map. The map's collections return the mappings whose order of * iteration is the descending order in which its entries are considered * eligible for retention, from the most-likely to be retained to the * least-likely. *

* Beware that obtaining the mappings is NOT a constant-time * operation. Because of the asynchronous nature of the page replacement * policy, determining the retention ordering requires a traversal of the * entries. * * @param limit the maximum size of the returned map * @return a descending snapshot view of this map * @throws IllegalArgumentException if the limit is negative */ public Map descendingMapWithLimit(int limit) { return orderedMap(false, limit); } Map orderedMap(boolean ascending, int limit) { checkArgument(limit >= 0); evictionLock.lock(); try { drainBuffers(); final int initialCapacity = (weigher == Weighers.entrySingleton()) ? Math.min(limit, (int) weightedSize()) : 16; final Map map = new LinkedHashMap<>(initialCapacity); final Iterator> iterator = ascending ? evictionDeque.iterator() : evictionDeque.descendingIterator(); while (iterator.hasNext() && (limit > map.size())) { Node node = iterator.next(); map.put(node.key, node.getValue()); } return unmodifiableMap(map); } finally { evictionLock.unlock(); } } /** The draining status of the buffers. */ enum DrainStatus { /** A drain is not taking place. */ IDLE { @Override boolean shouldDrainBuffers(boolean delayable) { return !delayable; } }, /** A drain is required due to a pending write modification. */ REQUIRED { @Override boolean shouldDrainBuffers(boolean delayable) { return true; } }, /** A drain is in progress. */ PROCESSING { @Override boolean shouldDrainBuffers(boolean delayable) { return false; } }; /** * Determines whether the buffers should be drained. * * @param delayable if a drain should be delayed until required * @return if a drain should be attempted */ abstract boolean shouldDrainBuffers(boolean delayable); } /** A value, its weight, and the entry's status. */ @Immutable static final class WeightedValue { final int weight; final V value; WeightedValue(V value, int weight) { this.weight = weight; this.value = value; } boolean contains(Object o) { return (o == value) || value.equals(o); } /** * If the entry is available in the hash-table and page replacement policy. */ boolean isAlive() { return weight > 0; } /** * If the entry was removed from the hash-table and is awaiting removal from * the page replacement policy. */ boolean isRetired() { return weight < 0; } /** * If the entry was removed from the hash-table and the page replacement * policy. */ boolean isDead() { return weight == 0; } } /** * A node contains the key, the weighted value, and the linkage pointers on * the page-replacement algorithm's data structures. */ @SuppressWarnings("serial") static final class Node extends AtomicReference> implements Linked> { final K key; @GuardedBy("evictionLock") Node prev; @GuardedBy("evictionLock") Node next; WeightedValue weightedValue; /** Creates a new, unlinked node. */ Node(K key, WeightedValue weightedValue) { super(weightedValue); this.key = key; this.weightedValue = weightedValue; } @Override @GuardedBy("evictionLock") public Node getPrevious() { return prev; } @Override @GuardedBy("evictionLock") public void setPrevious(Node prev) { this.prev = prev; } @Override @GuardedBy("evictionLock") public Node getNext() { return next; } @Override @GuardedBy("evictionLock") public void setNext(Node next) { this.next = next; } /** Retrieves the value held by the current WeightedValue. */ V getValue() { return get().value; } WeightedValue getWeightedValue() { return this.weightedValue; } } /** An adapter to safely externalize the keys. */ final class KeySet extends AbstractSet { final ConcurrentLinkedHashMap map = ConcurrentLinkedHashMap.this; @Override public int size() { return map.size(); } @Override public void clear() { map.clear(); } @Override public Iterator iterator() { return new KeyIterator(); } @Override public boolean contains(Object obj) { return containsKey(obj); } @Override public boolean remove(Object obj) { return (map.remove(obj) != null); } @Override public Object[] toArray() { return map.data.keySet().toArray(); } @Override public T[] toArray(T[] array) { return map.data.keySet().toArray(array); } } /** An adapter to safely externalize the key iterator. */ final class KeyIterator implements Iterator { final Iterator iterator = data.keySet().iterator(); K current; @Override public boolean hasNext() { return iterator.hasNext(); } @Override public K next() { current = iterator.next(); return current; } @Override public void remove() { checkState(current != null); ConcurrentLinkedHashMap.this.remove(current); current = null; } } /** An adapter to safely externalize the values. */ final class Values extends AbstractCollection { @Override public int size() { return ConcurrentLinkedHashMap.this.size(); } @Override public void clear() { ConcurrentLinkedHashMap.this.clear(); } @Override public Iterator iterator() { return new ValueIterator(); } @Override public boolean contains(Object o) { return containsValue(o); } } /** An adapter to safely externalize the value iterator. */ final class ValueIterator implements Iterator { final Iterator> iterator = data.values().iterator(); Node current; @Override public boolean hasNext() { return iterator.hasNext(); } @Override public V next() { current = iterator.next(); return current.getValue(); } @Override public void remove() { checkState(current != null); ConcurrentLinkedHashMap.this.remove(current.key); current = null; } } /** An adapter to safely externalize the entries. */ final class EntrySet extends AbstractSet> { final ConcurrentLinkedHashMap map = ConcurrentLinkedHashMap.this; @Override public int size() { return map.size(); } @Override public void clear() { map.clear(); } @Override public Iterator> iterator() { return new EntryIterator(); } @Override public boolean contains(Object obj) { if (!(obj instanceof Entry)) { return false; } Entry entry = (Entry) obj; Node node = map.data.get(entry.getKey()); return (node != null) && (node.getValue().equals(entry.getValue())); } @Override public boolean add(Entry entry) { return (map.putIfAbsent(entry.getKey(), entry.getValue()) == null); } @Override public boolean remove(Object obj) { if (!(obj instanceof Entry)) { return false; } Entry entry = (Entry) obj; return map.remove(entry.getKey(), entry.getValue()); } } /** An adapter to safely externalize the entry iterator. */ final class EntryIterator implements Iterator> { final Iterator> iterator = data.values().iterator(); Node current; @Override public boolean hasNext() { return iterator.hasNext(); } @Override public Entry next() { current = iterator.next(); return new WriteThroughEntry(current); } @Override public void remove() { checkState(current != null); ConcurrentLinkedHashMap.this.remove(current.key); current = null; } } /** An entry that allows updates to write through to the map. */ final class WriteThroughEntry extends SimpleEntry { static final long serialVersionUID = 1; WriteThroughEntry(Node node) { super(node.key, node.getValue()); } @Override public V setValue(V value) { put(getKey(), value); return super.setValue(value); } Object writeReplace() { return new SimpleEntry<>(this); } } /** A weigher that enforces that the weight falls within a valid range. */ static final class BoundedEntryWeigher implements EntryWeigher, Serializable { static final long serialVersionUID = 1; final EntryWeigher weigher; BoundedEntryWeigher(EntryWeigher weigher) { checkNotNull(weigher); this.weigher = weigher; } @Override public int weightOf(K key, V value) { int weight = weigher.weightOf(key, value); checkArgument(weight >= 1); return weight; } Object writeReplace() { return weigher; } } /** A queue that discards all additions and is always empty. */ static final class DiscardingQueue extends AbstractQueue { @Override public boolean add(Object e) { return true; } @Override public boolean offer(Object e) { return true; } @Override public Object poll() { return null; } @Override public Object peek() { return null; } @Override public int size() { return 0; } @Override public Iterator iterator() { return Collections.emptyIterator(); } } /** A listener that ignores all notifications. */ enum DiscardingListener implements EvictionListener { INSTANCE; @Override public void onEviction(Object key, Object value) {} } /* ---------------- Serialization Support -------------- */ static final long serialVersionUID = 1; Object writeReplace() { return new SerializationProxy<>(this); } private void readObject(ObjectInputStream stream) throws InvalidObjectException { throw new InvalidObjectException("Proxy required"); } /** * A proxy that is serialized instead of the map. The page-replacement * algorithm's data structures are not serialized so the deserialized * instance contains only the entries. This is acceptable as caches hold * transient data that is recomputable and serialization would tend to be * used as a fast warm-up process. */ static final class SerializationProxy implements Serializable { final EntryWeigher weigher; final EvictionListener listener; final int concurrencyLevel; final Map data; final long capacity; SerializationProxy(ConcurrentLinkedHashMap map) { concurrencyLevel = map.concurrencyLevel; data = new HashMap<>(map); capacity = map.capacity.get(); listener = map.listener; weigher = map.weigher; } Object readResolve() { ConcurrentLinkedHashMap map = new Builder() .concurrencyLevel(concurrencyLevel) .maximumWeightedCapacity(capacity) .listener(listener) .weigher(weigher) .build(); map.putAll(data); return map; } static final long serialVersionUID = 1; } /* ---------------- Builder -------------- */ /** * A builder that creates {@link ConcurrentLinkedHashMap} instances. It * provides a flexible approach for constructing customized instances with * a named parameter syntax. It can be used in the following manner: *
{@code
   * ConcurrentMap> graph = new Builder>()
   *     .maximumWeightedCapacity(5000)
   *     .weigher(Weighers.set())
   *     .build();
   * }
*/ public static final class Builder { static final int DEFAULT_CONCURRENCY_LEVEL = 16; static final int DEFAULT_INITIAL_CAPACITY = 16; EvictionListener listener; EntryWeigher weigher; int concurrencyLevel; int initialCapacity; long capacity; @SuppressWarnings("unchecked") public Builder() { capacity = -1; weigher = Weighers.entrySingleton(); initialCapacity = DEFAULT_INITIAL_CAPACITY; concurrencyLevel = DEFAULT_CONCURRENCY_LEVEL; listener = (EvictionListener) DiscardingListener.INSTANCE; } /** * Specifies the initial capacity of the hash table (default 16). * This is the number of key-value pairs that the hash table can hold * before a resize operation is required. * * @param initialCapacity the initial capacity used to size the hash table * to accommodate this many entries. * @throws IllegalArgumentException if the initialCapacity is negative */ public Builder initialCapacity(int initialCapacity) { checkArgument(initialCapacity >= 0); this.initialCapacity = initialCapacity; return this; } /** * Specifies the maximum weighted capacity to coerce the map to and may * exceed it temporarily. * * @param capacity the weighted threshold to bound the map by * @throws IllegalArgumentException if the maximumWeightedCapacity is * negative */ public Builder maximumWeightedCapacity(long capacity) { checkArgument(capacity >= 0); this.capacity = capacity; return this; } /** * Specifies the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate this many * threads (default 16). * * @param concurrencyLevel the estimated number of concurrently updating * threads * @throws IllegalArgumentException if the concurrencyLevel is less than or * equal to zero */ public Builder concurrencyLevel(int concurrencyLevel) { checkArgument(concurrencyLevel > 0); this.concurrencyLevel = concurrencyLevel; return this; } /** * Specifies an optional listener that is registered for notification when * an entry is evicted. * * @param listener the object to forward evicted entries to * @throws NullPointerException if the listener is null */ public Builder listener(EvictionListener listener) { checkNotNull(listener); this.listener = listener; return this; } /** * Specifies an algorithm to determine how many the units of capacity a * value consumes. The default algorithm bounds the map by the number of * key-value pairs by giving each entry a weight of 1. * * @param weigher the algorithm to determine a value's weight * @throws NullPointerException if the weigher is null */ public Builder weigher(Weigher weigher) { this.weigher = (weigher == Weighers.singleton()) ? Weighers.entrySingleton() : new BoundedEntryWeigher<>(Weighers.asEntryWeigher(weigher)); return this; } /** * Specifies an algorithm to determine how many the units of capacity an * entry consumes. The default algorithm bounds the map by the number of * key-value pairs by giving each entry a weight of 1. * * @param weigher the algorithm to determine a entry's weight * @throws NullPointerException if the weigher is null */ public Builder weigher(EntryWeigher weigher) { this.weigher = (weigher == Weighers.entrySingleton()) ? Weighers.entrySingleton() : new BoundedEntryWeigher<>(weigher); return this; } /** * Creates a new {@link ConcurrentLinkedHashMap} instance. * * @throws IllegalStateException if the maximum weighted capacity was * not set */ public ConcurrentLinkedHashMap build() { checkState(capacity >= 0); return new ConcurrentLinkedHashMap<>(this); } } }