org.apache.hadoop.mapred.lib.InputSampler Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in org.apache.hadoop.shaded.com.liance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org.apache.hadoop.shaded.org.licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.shaded.org.apache.hadoop.mapred.lib;
import java.org.apache.hadoop.shaded.io.IOException;
import java.util.ArrayList;
import java.util.Random;
import org.apache.hadoop.shaded.org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.shaded.org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.shaded.org.apache.hadoop.mapred.InputFormat;
import org.apache.hadoop.shaded.org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.shaded.org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.shaded.org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.shaded.org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.shaded.org.slf4j.Logger;
import org.apache.hadoop.shaded.org.slf4j.LoggerFactory;
@InterfaceAudience.Public
@InterfaceStability.Stable
public class InputSampler extends
org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.lib.partition.InputSampler {
private static final Logger LOG = LoggerFactory.getLogger(InputSampler.class);
public InputSampler(JobConf conf) {
super(conf);
}
public static void writePartitionFile(JobConf job, Sampler sampler)
throws IOException, ClassNotFoundException, InterruptedException {
writePartitionFile(Job.getInstance(job), sampler);
}
/**
* Interface to sample using an {@link org.apache.hadoop.shaded.org.apache.hadoop.mapred.InputFormat}.
*/
public interface Sampler extends
org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.lib.partition.InputSampler.Sampler {
/**
* For a given job, collect and return a subset of the keys from the
* input data.
*/
K[] getSample(InputFormat inf, JobConf job) throws IOException;
}
/**
* Samples the first n records from s splits.
* Inexpensive way to sample random data.
*/
public static class SplitSampler extends
org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.lib.partition.InputSampler.SplitSampler
implements Sampler {
/**
* Create a SplitSampler sampling all splits.
* Takes the first numSamples / numSplits records from each split.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public SplitSampler(int numSamples) {
this(numSamples, Integer.MAX_VALUE);
}
/**
* Create a new SplitSampler.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public SplitSampler(int numSamples, int maxSplitsSampled) {
super(numSamples, maxSplitsSampled);
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList samples = new ArrayList(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
/**
* Sample from random points in the input.
* General-purpose sampler. Takes numSamples / maxSplitsSampled inputs from
* each split.
*/
public static class RandomSampler extends
org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.lib.partition.InputSampler.RandomSampler
implements Sampler {
/**
* Create a new RandomSampler sampling all splits.
* This will read every split at the client, which is very expensive.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public RandomSampler(double freq, int numSamples) {
this(freq, numSamples, Integer.MAX_VALUE);
}
/**
* Create a new RandomSampler.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public RandomSampler(double freq, int numSamples, int maxSplitsSampled) {
super(freq, numSamples, maxSplitsSampled);
}
/**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList samples = new ArrayList(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
/**
* Sample from s splits at regular intervals.
* Useful for sorted data.
*/
public static class IntervalSampler extends
org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.lib.partition.InputSampler.IntervalSampler
implements Sampler {
/**
* Create a new IntervalSampler sampling all splits.
* @param freq The frequency with which records will be emitted.
*/
public IntervalSampler(double freq) {
this(freq, Integer.MAX_VALUE);
}
/**
* Create a new IntervalSampler.
* @param freq The frequency with which records will be emitted.
* @param maxSplitsSampled The maximum number of splits to examine.
* @see #getSample
*/
public IntervalSampler(double freq, int maxSplitsSampled) {
super(freq, maxSplitsSampled);
}
/**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList samples = new ArrayList();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy