org.apache.hadoop.mapreduce.Mapper Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in org.apache.hadoop.shaded.com.liance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org.apache.hadoop.shaded.org.licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.shaded.org.apache.hadoop.mapreduce;
import java.org.apache.hadoop.shaded.io.IOException;
import org.apache.hadoop.shaded.org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.shaded.org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.shaded.org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.shaded.org.apache.hadoop.org.apache.hadoop.shaded.io.RawComparator;
import org.apache.hadoop.shaded.org.apache.hadoop.org.apache.hadoop.shaded.io.org.apache.hadoop.shaded.com.ress.CompressionCodec;
import org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.task.MapContextImpl;
/**
* Maps input key/value pairs to a set of intermediate key/value pairs.
*
* Maps are the individual tasks which transform input records into a
* intermediate records. The transformed intermediate records need not be of
* the same type as the input records. A given input pair may map to zero or
* many output pairs.
*
* The Hadoop Map-Reduce framework spawns one map task for each
* {@link InputSplit} generated by the {@link InputFormat} for the job.
* Mapper
implementations can access the {@link Configuration} for
* the job via the {@link JobContext#getConfiguration()}.
*
*
The framework first calls
* {@link #setup(org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.Mapper.Context)}, followed by
* {@link #map(Object, Object, org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.Mapper.Context)}
* for each key/value pair in the InputSplit
. Finally
* {@link #cleanup(org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.Mapper.Context)} is called.
*
* All intermediate values associated with a given output key are
* subsequently grouped by the framework, and passed to a {@link Reducer} to
* determine the final output. Users can control the sorting and grouping by
* specifying two key {@link RawComparator} classes.
*
* The Mapper
outputs are partitioned per
* Reducer
. Users can control which keys (and hence records) go to
* which Reducer
by implementing a custom {@link Partitioner}.
*
*
Users can optionally specify a org.apache.hadoop.shaded.com.iner
, via
* {@link Job#setCombinerClass(Class)}, to perform local aggregation of the
* intermediate outputs, which helps to cut down the amount of data transferred
* from the Mapper
to the Reducer
.
*
*
Applications can specify if and how the intermediate
* outputs are to be org.apache.hadoop.shaded.com.ressed and which {@link CompressionCodec}s are to be
* used via the Configuration
.
*
* If the job has zero
* reduces then the output of the Mapper
is directly written
* to the {@link OutputFormat} without sorting by keys.
*
* Example:
*
* public class TokenCounterMapper
* extends Mapper<Object, Text, Text, IntWritable>{
*
* private final static IntWritable one = new IntWritable(1);
* private Text word = new Text();
*
* public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
* StringTokenizer itr = new StringTokenizer(value.toString());
* while (itr.hasMoreTokens()) {
* word.set(itr.nextToken());
* context.write(word, one);
* }
* }
* }
*
*
* Applications may override the
* {@link #run(org.apache.hadoop.shaded.org.apache.hadoop.mapreduce.Mapper.Context)} method to exert
* greater control on map processing e.g. multi-threaded Mapper
s
* etc.
*
* @see InputFormat
* @see JobContext
* @see Partitioner
* @see Reducer
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class Mapper {
/**
* The Context
passed on to the {@link Mapper} implementations.
*/
public abstract class Context
implements MapContext {
}
/**
* Called once at the beginning of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
}
/**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Expert users can override this method for more org.apache.hadoop.shaded.com.lete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}