All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.util.PriorityQueue Maven / Gradle / Ivy

There is a newer version: 3.4.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.util;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;


/** A PriorityQueue maintains a partial ordering of its elements such that the
  least element can always be found in constant time.  Put()'s and pop()'s
  require log(size) time. */
@InterfaceAudience.Private
@InterfaceStability.Unstable
public abstract class PriorityQueue {
  private T[] heap;
  private int size;
  private int maxSize;

  /** Determines the ordering of objects in this priority queue.  Subclasses
      must define this one method. */
  protected abstract boolean lessThan(Object a, Object b);

  /** Subclass constructors must call this. */
  @SuppressWarnings("unchecked")
  protected final void initialize(int maxSize) {
    size = 0;
    int heapSize = maxSize + 1;
    heap = (T[]) new Object[heapSize];
    this.maxSize = maxSize;
  }

  /**
   * Adds an Object to a PriorityQueue in log(size) time.
   * If one tries to add more objects than maxSize from initialize
   * a RuntimeException (ArrayIndexOutOfBound) is thrown.
   */
  public final void put(T element) {
    size++;
    heap[size] = element;
    upHeap();
  }

  /**
   * Adds element to the PriorityQueue in log(size) time if either
   * the PriorityQueue is not full, or not lessThan(element, top()).
   * @param element
   * @return true if element is added, false otherwise.
   */
  public boolean insert(T element){
    if (size < maxSize){
      put(element);
      return true;
    }
    else if (size > 0 && !lessThan(element, top())){
      heap[1] = element;
      adjustTop();
      return true;
    }
    else
      return false;
  }

  /** Returns the least element of the PriorityQueue in constant time. */
  public final T top() {
    if (size > 0)
      return heap[1];
    else
      return null;
  }

  /** Removes and returns the least element of the PriorityQueue in log(size)
      time. */
  public final T pop() {
    if (size > 0) {
      T result = heap[1];			  // save first value
      heap[1] = heap[size];			  // move last to first
      heap[size] = null;			  // permit GC of objects
      size--;
      downHeap();				  // adjust heap
      return result;
    } else
      return null;
  }

  /** Should be called when the Object at top changes values.  Still log(n)
   * worst case, but it's at least twice as fast to 
   *  { pq.top().change(); pq.adjustTop(); }
   * 
instead of
   *  { o = pq.pop(); o.change(); pq.push(o); }
   * 
*/ public final void adjustTop() { downHeap(); } /** Returns the number of elements currently stored in the PriorityQueue. */ public final int size() { return size; } /** Removes all entries from the PriorityQueue. */ public final void clear() { for (int i = 0; i <= size; i++) heap[i] = null; size = 0; } private final void upHeap() { int i = size; T node = heap[i]; // save bottom node int j = i >>> 1; while (j > 0 && lessThan(node, heap[j])) { heap[i] = heap[j]; // shift parents down i = j; j = j >>> 1; } heap[i] = node; // install saved node } private final void downHeap() { int i = 1; T node = heap[i]; // save top node int j = i << 1; // find smaller child int k = j + 1; if (k <= size && lessThan(heap[k], heap[j])) { j = k; } while (j <= size && lessThan(heap[j], node)) { heap[i] = heap[j]; // shift up child i = j; j = i << 1; k = j + 1; if (k <= size && lessThan(heap[k], heap[j])) { j = k; } } heap[i] = node; // install saved node } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy