org.apache.hadoop.metrics2.util.SampleQuantiles Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.util;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.Map;
import java.util.TreeMap;
import org.apache.hadoop.classification.InterfaceAudience;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Joiner;
import com.google.common.base.Preconditions;
/**
* Implementation of the Cormode, Korn, Muthukrishnan, and Srivastava algorithm
* for streaming calculation of targeted high-percentile epsilon-approximate
* quantiles.
*
* This is a generalization of the earlier work by Greenwald and Khanna (GK),
* which essentially allows different error bounds on the targeted quantiles,
* which allows for far more efficient calculation of high-percentiles.
*
* See: Cormode, Korn, Muthukrishnan, and Srivastava
* "Effective Computation of Biased Quantiles over Data Streams" in ICDE 2005
*
* Greenwald and Khanna,
* "Space-efficient online computation of quantile summaries" in SIGMOD 2001
*
*/
@InterfaceAudience.Private
public class SampleQuantiles implements QuantileEstimator {
/**
* Total number of items in stream
*/
private long count = 0;
/**
* Current list of sampled items, maintained in sorted order with error bounds
*/
private LinkedList samples;
/**
* Buffers incoming items to be inserted in batch. Items are inserted into
* the buffer linearly. When the buffer fills, it is flushed into the samples
* array in its entirety.
*/
private long[] buffer = new long[500];
private int bufferCount = 0;
/**
* Array of Quantiles that we care about, along with desired error.
*/
private final Quantile quantiles[];
public SampleQuantiles(Quantile[] quantiles) {
this.quantiles = quantiles;
this.samples = new LinkedList();
}
/**
* Specifies the allowable error for this rank, depending on which quantiles
* are being targeted.
*
* This is the f(r_i, n) function from the CKMS paper. It's basically how wide
* the range of this rank can be.
*
* @param rank
* the index in the list of samples
*/
private double allowableError(int rank) {
int size = samples.size();
double minError = size + 1;
for (Quantile q : quantiles) {
double error;
if (rank <= q.quantile * size) {
error = (2.0 * q.error * (size - rank)) / (1.0 - q.quantile);
} else {
error = (2.0 * q.error * rank) / q.quantile;
}
if (error < minError) {
minError = error;
}
}
return minError;
}
/**
* Add a new value from the stream.
*
* @param v
*/
synchronized public void insert(long v) {
buffer[bufferCount] = v;
bufferCount++;
count++;
if (bufferCount == buffer.length) {
insertBatch();
compress();
}
}
/**
* Merges items from buffer into the samples array in one pass.
* This is more efficient than doing an insert on every item.
*/
private void insertBatch() {
if (bufferCount == 0) {
return;
}
Arrays.sort(buffer, 0, bufferCount);
// Base case: no samples
int start = 0;
if (samples.size() == 0) {
SampleItem newItem = new SampleItem(buffer[0], 1, 0);
samples.add(newItem);
start++;
}
ListIterator it = samples.listIterator();
SampleItem item = it.next();
for (int i = start; i < bufferCount; i++) {
long v = buffer[i];
while (it.nextIndex() < samples.size() && item.value < v) {
item = it.next();
}
// If we found that bigger item, back up so we insert ourselves before it
if (item.value > v) {
it.previous();
}
// We use different indexes for the edge comparisons, because of the above
// if statement that adjusts the iterator
int delta;
if (it.previousIndex() == 0 || it.nextIndex() == samples.size()) {
delta = 0;
} else {
delta = ((int) Math.floor(allowableError(it.nextIndex()))) - 1;
}
SampleItem newItem = new SampleItem(v, 1, delta);
it.add(newItem);
item = newItem;
}
bufferCount = 0;
}
/**
* Try to remove extraneous items from the set of sampled items. This checks
* if an item is unnecessary based on the desired error bounds, and merges it
* with the adjacent item if it is.
*/
private void compress() {
if (samples.size() < 2) {
return;
}
ListIterator it = samples.listIterator();
SampleItem prev = null;
SampleItem next = it.next();
while (it.hasNext()) {
prev = next;
next = it.next();
if (prev.g + next.g + next.delta <= allowableError(it.previousIndex())) {
next.g += prev.g;
// Remove prev. it.remove() kills the last thing returned.
it.previous();
it.previous();
it.remove();
// it.next() is now equal to next, skip it back forward again
it.next();
}
}
}
/**
* Get the estimated value at the specified quantile.
*
* @param quantile Queried quantile, e.g. 0.50 or 0.99.
* @return Estimated value at that quantile.
*/
private long query(double quantile) {
Preconditions.checkState(!samples.isEmpty(), "no data in estimator");
int rankMin = 0;
int desired = (int) (quantile * count);
ListIterator it = samples.listIterator();
SampleItem prev = null;
SampleItem cur = it.next();
for (int i = 1; i < samples.size(); i++) {
prev = cur;
cur = it.next();
rankMin += prev.g;
if (rankMin + cur.g + cur.delta > desired + (allowableError(i) / 2)) {
return prev.value;
}
}
// edge case of wanting max value
return samples.get(samples.size() - 1).value;
}
/**
* Get a snapshot of the current values of all the tracked quantiles.
*
* @return snapshot of the tracked quantiles. If no items are added
* to the estimator, returns null.
*/
synchronized public Map snapshot() {
// flush the buffer first for best results
insertBatch();
if (samples.isEmpty()) {
return null;
}
Map values = new TreeMap();
for (int i = 0; i < quantiles.length; i++) {
values.put(quantiles[i], query(quantiles[i].quantile));
}
return values;
}
/**
* Returns the number of items that the estimator has processed
*
* @return count total number of items processed
*/
synchronized public long getCount() {
return count;
}
/**
* Returns the number of samples kept by the estimator
*
* @return count current number of samples
*/
@VisibleForTesting
synchronized public int getSampleCount() {
return samples.size();
}
/**
* Resets the estimator, clearing out all previously inserted items
*/
synchronized public void clear() {
count = 0;
bufferCount = 0;
samples.clear();
}
@Override
synchronized public String toString() {
Map data = snapshot();
if (data == null) {
return "[no samples]";
} else {
return Joiner.on("\n").withKeyValueSeparator(": ").join(data);
}
}
/**
* Describes a measured value passed to the estimator, tracking additional
* metadata required by the CKMS algorithm.
*/
private static class SampleItem {
/**
* Value of the sampled item (e.g. a measured latency value)
*/
public final long value;
/**
* Difference between the lowest possible rank of the previous item, and
* the lowest possible rank of this item.
*
* The sum of the g of all previous items yields this item's lower bound.
*/
public int g;
/**
* Difference between the item's greatest possible rank and lowest possible
* rank.
*/
public final int delta;
public SampleItem(long value, int lowerDelta, int delta) {
this.value = value;
this.g = lowerDelta;
this.delta = delta;
}
@Override
public String toString() {
return String.format("%d, %d, %d", value, g, delta);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy