org.apache.hadoop.ipc.Server Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.ipc;
import static org.apache.hadoop.ipc.ProcessingDetails.Timing;
import static org.apache.hadoop.ipc.RpcConstants.AUTHORIZATION_FAILED_CALL_ID;
import static org.apache.hadoop.ipc.RpcConstants.CONNECTION_CONTEXT_CALL_ID;
import static org.apache.hadoop.ipc.RpcConstants.CURRENT_VERSION;
import static org.apache.hadoop.ipc.RpcConstants.HEADER_LEN_AFTER_HRPC_PART;
import static org.apache.hadoop.ipc.RpcConstants.PING_CALL_ID;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.lang.reflect.UndeclaredThrowableException;
import java.net.BindException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;
import java.net.StandardSocketOptions;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.nio.channels.CancelledKeyException;
import java.nio.channels.Channels;
import java.nio.channels.ClosedChannelException;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.channels.WritableByteChannel;
import java.nio.charset.StandardCharsets;
import java.security.PrivilegedExceptionAction;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;
import java.util.stream.Collectors;
import javax.security.sasl.Sasl;
import javax.security.sasl.SaslException;
import javax.security.sasl.SaslServer;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceAudience.Private;
import org.apache.hadoop.classification.InterfaceAudience.Public;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configuration.IntegerRanges;
import org.apache.hadoop.fs.CommonConfigurationKeys;
import org.apache.hadoop.fs.CommonConfigurationKeysPublic;
import org.apache.hadoop.ha.HealthCheckFailedException;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableUtils;
import org.apache.hadoop.ipc.CallQueueManager.CallQueueOverflowException;
import org.apache.hadoop.ipc.RPC.RpcInvoker;
import org.apache.hadoop.ipc.RPC.VersionMismatch;
import org.apache.hadoop.ipc.metrics.RpcDetailedMetrics;
import org.apache.hadoop.ipc.metrics.RpcMetrics;
import org.apache.hadoop.ipc.protobuf.IpcConnectionContextProtos.IpcConnectionContextProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcKindProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcRequestHeaderProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcResponseHeaderProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcResponseHeaderProto.RpcErrorCodeProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcResponseHeaderProto.RpcStatusProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcSaslProto;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcSaslProto.SaslAuth;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RpcSaslProto.SaslState;
import org.apache.hadoop.ipc.protobuf.RpcHeaderProtos.RPCTraceInfoProto;
import org.apache.hadoop.net.NetUtils;
import org.apache.hadoop.security.AccessControlException;
import org.apache.hadoop.security.SaslPropertiesResolver;
import org.apache.hadoop.security.SaslRpcServer;
import org.apache.hadoop.security.SaslRpcServer.AuthMethod;
import org.apache.hadoop.security.SecurityUtil;
import org.apache.hadoop.security.UserGroupInformation;
import org.apache.hadoop.security.UserGroupInformation.AuthenticationMethod;
import org.apache.hadoop.security.authorize.AuthorizationException;
import org.apache.hadoop.security.authorize.PolicyProvider;
import org.apache.hadoop.security.authorize.ProxyUsers;
import org.apache.hadoop.security.authorize.ServiceAuthorizationManager;
import org.apache.hadoop.security.token.SecretManager;
import org.apache.hadoop.security.token.SecretManager.InvalidToken;
import org.apache.hadoop.security.token.TokenIdentifier;
import org.apache.hadoop.util.ExitUtil;
import org.apache.hadoop.util.ProtoUtil;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Time;
import java.util.concurrent.atomic.AtomicBoolean;
import org.apache.hadoop.tracing.Span;
import org.apache.hadoop.tracing.SpanContext;
import org.apache.hadoop.tracing.TraceScope;
import org.apache.hadoop.tracing.Tracer;
import org.apache.hadoop.tracing.TraceUtils;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.hadoop.classification.VisibleForTesting;
import org.apache.hadoop.thirdparty.com.google.common.util.concurrent.ThreadFactoryBuilder;
import org.apache.hadoop.thirdparty.protobuf.ByteString;
import org.apache.hadoop.thirdparty.protobuf.CodedOutputStream;
import org.apache.hadoop.thirdparty.protobuf.Message;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/** An abstract IPC service. IPC calls take a single {@link Writable} as a
* parameter, and return a {@link Writable} as their value. A service runs on
* a port and is defined by a parameter class and a value class.
*
* @see Client
*/
@Public
@InterfaceStability.Evolving
public abstract class Server {
private final boolean authorize;
private List enabledAuthMethods;
private RpcSaslProto negotiateResponse;
private ExceptionsHandler exceptionsHandler = new ExceptionsHandler();
private Tracer tracer;
private AlignmentContext alignmentContext;
/**
* Allow server to do force Kerberos re-login once after failure irrespective
* of the last login time.
*/
private final AtomicBoolean canTryForceLogin = new AtomicBoolean(true);
/**
* Logical name of the server used in metrics and monitor.
*/
private final String serverName;
/**
* Add exception classes for which server won't log stack traces.
*
* @param exceptionClass exception classes
*/
public void addTerseExceptions(Class>... exceptionClass) {
exceptionsHandler.addTerseLoggingExceptions(exceptionClass);
}
/**
* Add exception classes which server won't log at all.
*
* @param exceptionClass exception classes
*/
public void addSuppressedLoggingExceptions(Class>... exceptionClass) {
exceptionsHandler.addSuppressedLoggingExceptions(exceptionClass);
}
/**
* Set alignment context to pass state info thru RPC.
*
* @param alignmentContext alignment state context
*/
public void setAlignmentContext(AlignmentContext alignmentContext) {
this.alignmentContext = alignmentContext;
}
/**
* ExceptionsHandler manages Exception groups for special handling
* e.g., terse exception group for concise logging messages
*/
static class ExceptionsHandler {
private final Set terseExceptions =
ConcurrentHashMap.newKeySet();
private final Set suppressedExceptions =
ConcurrentHashMap.newKeySet();
/**
* Add exception classes for which server won't log stack traces.
* Optimized for infrequent invocation.
* @param exceptionClass exception classes
*/
void addTerseLoggingExceptions(Class>... exceptionClass) {
terseExceptions.addAll(Arrays
.stream(exceptionClass)
.map(Class::toString)
.collect(Collectors.toSet()));
}
/**
* Add exception classes which server won't log at all.
* Optimized for infrequent invocation.
* @param exceptionClass exception classes
*/
void addSuppressedLoggingExceptions(Class>... exceptionClass) {
suppressedExceptions.addAll(Arrays
.stream(exceptionClass)
.map(Class::toString)
.collect(Collectors.toSet()));
}
boolean isTerseLog(Class> t) {
return terseExceptions.contains(t.toString());
}
boolean isSuppressedLog(Class> t) {
return suppressedExceptions.contains(t.toString());
}
}
/**
* If the user accidentally sends an HTTP GET to an IPC port, we detect this
* and send back a nicer response.
*/
private static final ByteBuffer HTTP_GET_BYTES = ByteBuffer.wrap(
"GET ".getBytes(StandardCharsets.UTF_8));
/**
* An HTTP response to send back if we detect an HTTP request to our IPC
* port.
*/
static final String RECEIVED_HTTP_REQ_RESPONSE =
"HTTP/1.1 404 Not Found\r\n" +
"Content-type: text/plain\r\n\r\n" +
"It looks like you are making an HTTP request to a Hadoop IPC port. " +
"This is not the correct port for the web interface on this daemon.\r\n";
/**
* Initial and max size of response buffer
*/
static int INITIAL_RESP_BUF_SIZE = 10240;
static class RpcKindMapValue {
final Class extends Writable> rpcRequestWrapperClass;
final RpcInvoker rpcInvoker;
RpcKindMapValue (Class extends Writable> rpcRequestWrapperClass,
RpcInvoker rpcInvoker) {
this.rpcInvoker = rpcInvoker;
this.rpcRequestWrapperClass = rpcRequestWrapperClass;
}
}
static Map rpcKindMap = new HashMap<>(4);
/**
* Register a RPC kind and the class to deserialize the rpc request.
*
* Called by static initializers of rpcKind Engines
* @param rpcKind - input rpcKind.
* @param rpcRequestWrapperClass - this class is used to deserialze the
* the rpc request.
* @param rpcInvoker - use to process the calls on SS.
*/
public static void registerProtocolEngine(RPC.RpcKind rpcKind,
Class extends Writable> rpcRequestWrapperClass,
RpcInvoker rpcInvoker) {
RpcKindMapValue old =
rpcKindMap.put(rpcKind, new RpcKindMapValue(rpcRequestWrapperClass, rpcInvoker));
if (old != null) {
rpcKindMap.put(rpcKind, old);
throw new IllegalArgumentException("ReRegistration of rpcKind: " +
rpcKind);
}
LOG.debug("rpcKind={}, rpcRequestWrapperClass={}, rpcInvoker={}.",
rpcKind, rpcRequestWrapperClass, rpcInvoker);
}
public Class extends Writable> getRpcRequestWrapper(
RpcKindProto rpcKind) {
if (rpcRequestClass != null)
return rpcRequestClass;
RpcKindMapValue val = rpcKindMap.get(ProtoUtil.convert(rpcKind));
return (val == null) ? null : val.rpcRequestWrapperClass;
}
protected RpcInvoker getServerRpcInvoker(RPC.RpcKind rpcKind) {
return getRpcInvoker(rpcKind);
}
public static RpcInvoker getRpcInvoker(RPC.RpcKind rpcKind) {
RpcKindMapValue val = rpcKindMap.get(rpcKind);
return (val == null) ? null : val.rpcInvoker;
}
public static final Logger LOG = LoggerFactory.getLogger(Server.class);
public static final Logger AUDITLOG =
LoggerFactory.getLogger("SecurityLogger."+Server.class.getName());
private static final String AUTH_FAILED_FOR = "Auth failed for ";
private static final String AUTH_SUCCESSFUL_FOR = "Auth successful for ";
private static final ThreadLocal SERVER = new ThreadLocal();
private static final Map> PROTOCOL_CACHE =
new ConcurrentHashMap>();
static Class> getProtocolClass(String protocolName, Configuration conf)
throws ClassNotFoundException {
Class> protocol = PROTOCOL_CACHE.get(protocolName);
if (protocol == null) {
protocol = conf.getClassByName(protocolName);
PROTOCOL_CACHE.put(protocolName, protocol);
}
return protocol;
}
/** @return Returns the server instance called under or null. May be called under
* {@link #call(Writable, long)} implementations, and under {@link Writable}
* methods of paramters and return values. Permits applications to access
* the server context.*/
public static Server get() {
return SERVER.get();
}
/** This is set to Call object before Handler invokes an RPC and reset
* after the call returns.
*/
private static final ThreadLocal CurCall = new ThreadLocal();
/** @return Get the current call. */
@VisibleForTesting
public static ThreadLocal getCurCall() {
return CurCall;
}
/**
* Returns the currently active RPC call's sequential ID number. A negative
* call ID indicates an invalid value, such as if there is no currently active
* RPC call.
*
* @return int sequential ID number of currently active RPC call
*/
public static int getCallId() {
Call call = CurCall.get();
return call != null ? call.callId : RpcConstants.INVALID_CALL_ID;
}
/**
* @return The current active RPC call's retry count. -1 indicates the retry
* cache is not supported in the client side.
*/
public static int getCallRetryCount() {
Call call = CurCall.get();
return call != null ? call.retryCount : RpcConstants.INVALID_RETRY_COUNT;
}
/**
* @return Returns the remote side ip address when invoked inside an RPC
* Returns null in case of an error.
*/
public static InetAddress getRemoteIp() {
Call call = CurCall.get();
return (call != null) ? call.getHostInetAddress() : null;
}
/**
* @return Returns the remote side port when invoked inside an RPC
* Returns 0 in case of an error.
*/
public static int getRemotePort() {
Call call = CurCall.get();
return (call != null) ? call.getRemotePort() : 0;
}
/**
* Returns the SASL qop for the current call, if the current call is
* set, and the SASL negotiation is done. Otherwise return null
* Note this only returns established QOP for auxiliary port, and
* returns null for primary (non-auxiliary) port.
*
* Also note that CurCall is thread local object. So in fact, different
* handler threads will process different CurCall object.
*
* Also, only return for RPC calls, not supported for other protocols.
* @return the QOP of the current connection.
*/
public static String getAuxiliaryPortEstablishedQOP() {
Call call = CurCall.get();
if (!(call instanceof RpcCall)) {
return null;
}
RpcCall rpcCall = (RpcCall)call;
if (rpcCall.connection.isOnAuxiliaryPort()) {
return rpcCall.connection.getEstablishedQOP();
} else {
// Not sending back QOP for primary port
return null;
}
}
/**
* @return Returns the clientId from the current RPC request.
*/
public static byte[] getClientId() {
Call call = CurCall.get();
return call != null ? call.clientId : RpcConstants.DUMMY_CLIENT_ID;
}
/** @return Returns remote address as a string when invoked inside an RPC.
* Returns null in case of an error.
*/
public static String getRemoteAddress() {
InetAddress addr = getRemoteIp();
return (addr == null) ? null : addr.getHostAddress();
}
/** Returns the RPC remote user when invoked inside an RPC. Note this
* may be different than the current user if called within another doAs
* @return connection's UGI or null if not an RPC
*/
public static UserGroupInformation getRemoteUser() {
Call call = CurCall.get();
return (call != null) ? call.getRemoteUser() : null;
}
public static String getProtocol() {
Call call = CurCall.get();
return (call != null) ? call.getProtocol() : null;
}
/** @return Return true if the invocation was through an RPC.
*/
public static boolean isRpcInvocation() {
return CurCall.get() != null;
}
/**
* @return Return the priority level assigned by call queue to an RPC
* Returns 0 in case no priority is assigned.
*/
public static int getPriorityLevel() {
Call call = CurCall.get();
return call != null? call.getPriorityLevel() : 0;
}
private String bindAddress;
private int port; // port we listen on
private int handlerCount; // number of handler threads
private int readThreads; // number of read threads
private int readerPendingConnectionQueue; // number of connections to queue per read thread
private Class extends Writable> rpcRequestClass; // class used for deserializing the rpc request
final protected RpcMetrics rpcMetrics;
final protected RpcDetailedMetrics rpcDetailedMetrics;
private Configuration conf;
private String portRangeConfig = null;
private SecretManager secretManager;
private SaslPropertiesResolver saslPropsResolver;
private ServiceAuthorizationManager serviceAuthorizationManager = new ServiceAuthorizationManager();
private int maxQueueSize;
private final int maxRespSize;
private final ThreadLocal responseBuffer =
new ThreadLocal(){
@Override
protected ResponseBuffer initialValue() {
return new ResponseBuffer(INITIAL_RESP_BUF_SIZE);
}
};
private int socketSendBufferSize;
private final int maxDataLength;
private final boolean tcpNoDelay; // if T then disable Nagle's Algorithm
volatile private boolean running = true; // true while server runs
private CallQueueManager callQueue;
private long purgeIntervalNanos;
// maintains the set of client connections and handles idle timeouts
private ConnectionManager connectionManager;
private Listener listener = null;
// Auxiliary listeners maintained as in a map, to allow
// arbitrary number of of auxiliary listeners. A map from
// the port to the listener binding to it.
private Map auxiliaryListenerMap;
private Responder responder = null;
private Handler[] handlers = null;
private final AtomicInteger numInProcessHandler = new AtomicInteger();
private final LongAdder totalRequests = new LongAdder();
private long lastSeenTotalRequests = 0;
private long totalRequestsPerSecond = 0;
private final long metricsUpdaterInterval;
private final ScheduledExecutorService scheduledExecutorService;
private volatile boolean logSlowRPC = false;
/** Threshold time for log slow rpc. */
private volatile long logSlowRPCThresholdTime;
/**
* Checks if LogSlowRPC is set true.
* @return true, if LogSlowRPC is set true, false, otherwise.
*/
public boolean isLogSlowRPC() {
return logSlowRPC;
}
public long getLogSlowRPCThresholdTime() {
return logSlowRPCThresholdTime;
}
public int getNumInProcessHandler() {
return numInProcessHandler.get();
}
public long getTotalRequests() {
return totalRequests.sum();
}
public long getTotalRequestsPerSecond() {
return totalRequestsPerSecond;
}
/**
* Sets slow RPC flag.
* @param logSlowRPCFlag input logSlowRPCFlag.
*/
@VisibleForTesting
public void setLogSlowRPC(boolean logSlowRPCFlag) {
this.logSlowRPC = logSlowRPCFlag;
}
@VisibleForTesting
public void setLogSlowRPCThresholdTime(long logSlowRPCThresholdMs) {
this.logSlowRPCThresholdTime = rpcMetrics.getMetricsTimeUnit().
convert(logSlowRPCThresholdMs, TimeUnit.MILLISECONDS);
}
private void setPurgeIntervalNanos(int purgeInterval) {
int tmpPurgeInterval = CommonConfigurationKeysPublic.
IPC_SERVER_PURGE_INTERVAL_MINUTES_DEFAULT;
if (purgeInterval > 0) {
tmpPurgeInterval = purgeInterval;
}
this.purgeIntervalNanos = TimeUnit.NANOSECONDS.convert(
tmpPurgeInterval, TimeUnit.MINUTES);
}
@VisibleForTesting
public long getPurgeIntervalNanos() {
return this.purgeIntervalNanos;
}
/**
* Logs a Slow RPC Request.
*
* @param methodName - RPC Request method name
* @param details - Processing Detail.
*
* If a request took significant more time than other requests,
* and its processing time is at least `logSlowRPCThresholdMs` we consider that as a slow RPC.
*
* The definition rules for calculating whether the current request took too much time
* compared to other requests are as follows:
* 3 is a magic number that comes from 3 sigma deviation.
* A very simple explanation can be found by searching for 68-95-99.7 rule.
* We flag an RPC as slow RPC if and only if it falls above 99.7% of requests.
* We start this logic only once we have enough sample size.
*/
void logSlowRpcCalls(String methodName, Call call,
ProcessingDetails details) {
final int deviation = 3;
// 1024 for minSampleSize just a guess -- not a number computed based on
// sample size analysis. It is chosen with the hope that this
// number is high enough to avoid spurious logging, yet useful
// in practice.
final int minSampleSize = 1024;
final double threeSigma = rpcMetrics.getProcessingMean() +
(rpcMetrics.getProcessingStdDev() * deviation);
final TimeUnit metricsTimeUnit = rpcMetrics.getMetricsTimeUnit();
long processingTime = details.get(Timing.PROCESSING, metricsTimeUnit);
if ((rpcMetrics.getProcessingSampleCount() > minSampleSize) &&
(processingTime > threeSigma) &&
(processingTime > getLogSlowRPCThresholdTime())) {
LOG.warn("Slow RPC : {} took {} {} to process from client {}, the processing detail is {}," +
" and the threshold time is {} {}.", methodName, processingTime, metricsTimeUnit,
call, details.toString(), getLogSlowRPCThresholdTime(), metricsTimeUnit);
rpcMetrics.incrSlowRpc();
}
}
void updateMetrics(Call call, long processingStartTimeNanos, boolean connDropped) {
totalRequests.increment();
// delta = handler + processing + response
long completionTimeNanos = Time.monotonicNowNanos();
long deltaNanos = completionTimeNanos - processingStartTimeNanos;
long arrivalTimeNanos = call.timestampNanos;
ProcessingDetails details = call.getProcessingDetails();
// queue time is the delta between when the call first arrived and when it
// began being serviced, minus the time it took to be put into the queue
details.set(Timing.QUEUE,
processingStartTimeNanos - arrivalTimeNanos - details.get(Timing.ENQUEUE));
deltaNanos -= details.get(Timing.PROCESSING);
deltaNanos -= details.get(Timing.RESPONSE);
details.set(Timing.HANDLER, deltaNanos);
long enQueueTime = details.get(Timing.ENQUEUE, rpcMetrics.getMetricsTimeUnit());
rpcMetrics.addRpcEnQueueTime(enQueueTime);
long queueTime = details.get(Timing.QUEUE, rpcMetrics.getMetricsTimeUnit());
rpcMetrics.addRpcQueueTime(queueTime);
if (call.isResponseDeferred() || connDropped) {
// call was skipped; don't include it in processing metrics
return;
}
long processingTime =
details.get(Timing.PROCESSING, rpcMetrics.getMetricsTimeUnit());
long waitTime =
details.get(Timing.LOCKWAIT, rpcMetrics.getMetricsTimeUnit());
long responseTime =
details.get(Timing.RESPONSE, rpcMetrics.getMetricsTimeUnit());
rpcMetrics.addRpcLockWaitTime(waitTime);
rpcMetrics.addRpcProcessingTime(processingTime);
rpcMetrics.addRpcResponseTime(responseTime);
// don't include lock wait for detailed metrics.
processingTime -= waitTime;
String name = call.getDetailedMetricsName();
rpcDetailedMetrics.addProcessingTime(name, processingTime);
// Overall processing time is from arrival to completion.
long overallProcessingTime = rpcMetrics.getMetricsTimeUnit()
.convert(completionTimeNanos - arrivalTimeNanos, TimeUnit.NANOSECONDS);
rpcDetailedMetrics.addOverallProcessingTime(name, overallProcessingTime);
callQueue.addResponseTime(name, call, details);
if (isLogSlowRPC()) {
logSlowRpcCalls(name, call, details);
}
if (details.getReturnStatus() == RpcStatusProto.SUCCESS) {
rpcMetrics.incrRpcCallSuccesses();
}
}
void updateDeferredMetrics(String name, long processingTime) {
rpcMetrics.addDeferredRpcProcessingTime(processingTime);
rpcDetailedMetrics.addDeferredProcessingTime(name, processingTime);
}
/**
* A convenience method to bind to a given address and report
* better exceptions if the address is not a valid host.
* @param socket the socket to bind
* @param address the address to bind to
* @param backlog the number of connections allowed in the queue
* @throws BindException if the address can't be bound
* @throws UnknownHostException if the address isn't a valid host name
* @throws IOException other random errors from bind
*/
public static void bind(ServerSocket socket, InetSocketAddress address,
int backlog) throws IOException {
bind(socket, address, backlog, null, null);
}
public static void bind(ServerSocket socket, InetSocketAddress address,
int backlog, Configuration conf, String rangeConf) throws IOException {
try {
IntegerRanges range = null;
if (rangeConf != null) {
range = conf.getRange(rangeConf, "");
}
if (range == null || range.isEmpty() || (address.getPort() != 0)) {
socket.bind(address, backlog);
} else {
for (Integer port : range) {
if (socket.isBound()) break;
try {
InetSocketAddress temp = new InetSocketAddress(address.getAddress(),
port);
socket.bind(temp, backlog);
} catch(BindException e) {
//Ignored
}
}
if (!socket.isBound()) {
throw new BindException("Could not find a free port in "+range);
}
}
} catch (SocketException e) {
throw NetUtils.wrapException(null,
0,
address.getHostName(),
address.getPort(), e);
}
}
@VisibleForTesting
int getPriorityLevel(Schedulable e) {
return callQueue.getPriorityLevel(e);
}
@VisibleForTesting
int getPriorityLevel(UserGroupInformation ugi) {
return callQueue.getPriorityLevel(ugi);
}
@VisibleForTesting
void setPriorityLevel(UserGroupInformation ugi, int priority) {
callQueue.setPriorityLevel(ugi, priority);
}
/**
* Returns a handle to the rpcMetrics (required in tests)
* @return rpc metrics
*/
@VisibleForTesting
public RpcMetrics getRpcMetrics() {
return rpcMetrics;
}
@VisibleForTesting
public RpcDetailedMetrics getRpcDetailedMetrics() {
return rpcDetailedMetrics;
}
@VisibleForTesting
Iterable extends Thread> getHandlers() {
return Arrays.asList(handlers);
}
@VisibleForTesting
Connection[] getConnections() {
return connectionManager.toArray();
}
/**
* Refresh the service authorization ACL for the service handled by this server.
*
* @param conf input Configuration.
* @param provider input PolicyProvider.
*/
public void refreshServiceAcl(Configuration conf, PolicyProvider provider) {
serviceAuthorizationManager.refresh(conf, provider);
}
/**
* Refresh the service authorization ACL for the service handled by this server
* using the specified Configuration.
*
* @param conf input Configuration.
* @param provider input provider.
*/
@Private
public void refreshServiceAclWithLoadedConfiguration(Configuration conf,
PolicyProvider provider) {
serviceAuthorizationManager.refreshWithLoadedConfiguration(conf, provider);
}
/**
* Returns a handle to the serviceAuthorizationManager (required in tests)
* @return instance of ServiceAuthorizationManager for this server
*/
@InterfaceAudience.LimitedPrivate({"HDFS", "MapReduce"})
public ServiceAuthorizationManager getServiceAuthorizationManager() {
return serviceAuthorizationManager;
}
private String getQueueClassPrefix() {
return CommonConfigurationKeys.IPC_NAMESPACE + "." + port;
}
@Deprecated
static Class extends BlockingQueue> getQueueClass(
String prefix, Configuration conf) {
String name = prefix + "." + CommonConfigurationKeys.IPC_CALLQUEUE_IMPL_KEY;
Class> queueClass = conf.getClass(name, LinkedBlockingQueue.class);
return CallQueueManager.convertQueueClass(queueClass, Call.class);
}
/**
* Return class configured by property 'ipc..callqueue.impl' if it is
* present. If the config is not present, default config (without port) is
* used to derive class i.e 'ipc.callqueue.impl', and derived class is
* returned if class value is present and valid. If default config is also
* not present, default class {@link LinkedBlockingQueue} is returned.
*
* @param namespace Namespace "ipc".
* @param port Server's listener port.
* @param conf Configuration properties.
* @return Class returned based on configuration.
*/
static Class extends BlockingQueue> getQueueClass(
String namespace, int port, Configuration conf) {
String nameWithPort = namespace + "." + port + "."
+ CommonConfigurationKeys.IPC_CALLQUEUE_IMPL_KEY;
String nameWithoutPort = namespace + "."
+ CommonConfigurationKeys.IPC_CALLQUEUE_IMPL_KEY;
Class> queueClass = conf.getClass(nameWithPort, null);
if(queueClass == null) {
queueClass = conf.getClass(nameWithoutPort, LinkedBlockingQueue.class);
}
return CallQueueManager.convertQueueClass(queueClass, Call.class);
}
@Deprecated
static Class extends RpcScheduler> getSchedulerClass(
String prefix, Configuration conf) {
String schedulerKeyname = prefix + "." + CommonConfigurationKeys
.IPC_SCHEDULER_IMPL_KEY;
Class> schedulerClass = conf.getClass(schedulerKeyname, null);
// Patch the configuration for legacy fcq configuration that does not have
// a separate scheduler setting
if (schedulerClass == null) {
String queueKeyName = prefix + "." + CommonConfigurationKeys
.IPC_CALLQUEUE_IMPL_KEY;
Class> queueClass = conf.getClass(queueKeyName, null);
if (queueClass != null) {
if (queueClass.getCanonicalName().equals(
FairCallQueue.class.getCanonicalName())) {
conf.setClass(schedulerKeyname, DecayRpcScheduler.class,
RpcScheduler.class);
}
}
}
schedulerClass = conf.getClass(schedulerKeyname,
DefaultRpcScheduler.class);
return CallQueueManager.convertSchedulerClass(schedulerClass);
}
/**
* Return class configured by property 'ipc..scheduler.impl' if it is
* present. If the config is not present, and if property
* 'ipc..callqueue.impl' represents FairCallQueue class,
* return DecayRpcScheduler. If config 'ipc..callqueue.impl'
* does not have value FairCallQueue, default config (without port) is used
* to derive class i.e 'ipc.scheduler.impl'. If default config is also not
* present, default class {@link DefaultRpcScheduler} is returned.
*
* @param namespace Namespace "ipc".
* @param port Server's listener port.
* @param conf Configuration properties.
* @return Class returned based on configuration.
*/
static Class extends RpcScheduler> getSchedulerClass(
String namespace, int port, Configuration conf) {
String schedulerKeyNameWithPort = namespace + "." + port + "."
+ CommonConfigurationKeys.IPC_SCHEDULER_IMPL_KEY;
String schedulerKeyNameWithoutPort = namespace + "."
+ CommonConfigurationKeys.IPC_SCHEDULER_IMPL_KEY;
Class> schedulerClass = conf.getClass(schedulerKeyNameWithPort, null);
// Patch the configuration for legacy fcq configuration that does not have
// a separate scheduler setting
if (schedulerClass == null) {
String queueKeyNameWithPort = namespace + "." + port + "."
+ CommonConfigurationKeys.IPC_CALLQUEUE_IMPL_KEY;
Class> queueClass = conf.getClass(queueKeyNameWithPort, null);
if (queueClass != null) {
if (queueClass.getCanonicalName().equals(
FairCallQueue.class.getCanonicalName())) {
conf.setClass(schedulerKeyNameWithPort, DecayRpcScheduler.class,
RpcScheduler.class);
}
}
}
schedulerClass = conf.getClass(schedulerKeyNameWithPort, null);
if (schedulerClass == null) {
schedulerClass = conf.getClass(schedulerKeyNameWithoutPort,
DefaultRpcScheduler.class);
}
return CallQueueManager.convertSchedulerClass(schedulerClass);
}
/*
* Refresh the call queue
*/
public synchronized void refreshCallQueue(Configuration conf) {
// Create the next queue
String prefix = getQueueClassPrefix();
this.maxQueueSize = handlerCount * conf.getInt(
CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_KEY,
CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_DEFAULT);
callQueue.swapQueue(
getSchedulerClass(CommonConfigurationKeys.IPC_NAMESPACE, port, conf),
getQueueClass(CommonConfigurationKeys.IPC_NAMESPACE, port, conf),
maxQueueSize, prefix, conf);
callQueue.setClientBackoffEnabled(getClientBackoffEnable(
CommonConfigurationKeys.IPC_NAMESPACE, port, conf));
}
/**
* Get from config if client backoff is enabled on that port.
*/
@Deprecated
static boolean getClientBackoffEnable(
String prefix, Configuration conf) {
String name = prefix + "." +
CommonConfigurationKeys.IPC_BACKOFF_ENABLE;
return conf.getBoolean(name,
CommonConfigurationKeys.IPC_BACKOFF_ENABLE_DEFAULT);
}
/**
* Return boolean value configured by property 'ipc..backoff.enable'
* if it is present. If the config is not present, default config
* (without port) is used to derive class i.e 'ipc.backoff.enable',
* and derived value is returned if configured. Otherwise, default value
* {@link CommonConfigurationKeys#IPC_BACKOFF_ENABLE_DEFAULT} is returned.
*
* @param namespace Namespace "ipc".
* @param port Server's listener port.
* @param conf Configuration properties.
* @return Value returned based on configuration.
*/
static boolean getClientBackoffEnable(
String namespace, int port, Configuration conf) {
String name = namespace + "." + port + "." +
CommonConfigurationKeys.IPC_BACKOFF_ENABLE;
boolean valueWithPort = conf.getBoolean(name,
CommonConfigurationKeys.IPC_BACKOFF_ENABLE_DEFAULT);
if (valueWithPort != CommonConfigurationKeys.IPC_BACKOFF_ENABLE_DEFAULT) {
return valueWithPort;
}
return conf.getBoolean(namespace + "."
+ CommonConfigurationKeys.IPC_BACKOFF_ENABLE,
CommonConfigurationKeys.IPC_BACKOFF_ENABLE_DEFAULT);
}
/** A generic call queued for handling. */
public static class Call implements Schedulable,
PrivilegedExceptionAction {
private final ProcessingDetails processingDetails =
new ProcessingDetails(TimeUnit.NANOSECONDS);
// the method name to use in metrics
private volatile String detailedMetricsName = "";
final int callId; // the client's call id
final int retryCount; // the retry count of the call
private final long timestampNanos; // time the call was received
long responseTimestampNanos; // time the call was served
private AtomicInteger responseWaitCount = new AtomicInteger(1);
final RPC.RpcKind rpcKind;
final byte[] clientId;
private final Span span; // the trace span on the server side
private final CallerContext callerContext; // the call context
private boolean deferredResponse = false;
private int priorityLevel;
// the priority level assigned by scheduler, 0 by default
private long clientStateId;
private boolean isCallCoordinated;
// Serialized RouterFederatedStateProto message to
// store last seen states for multiple namespaces.
private ByteString federatedNamespaceState;
Call() {
this(RpcConstants.INVALID_CALL_ID, RpcConstants.INVALID_RETRY_COUNT,
RPC.RpcKind.RPC_BUILTIN, RpcConstants.DUMMY_CLIENT_ID);
}
Call(Call call) {
this(call.callId, call.retryCount, call.rpcKind, call.clientId,
call.span, call.callerContext);
}
Call(int id, int retryCount, RPC.RpcKind kind, byte[] clientId) {
this(id, retryCount, kind, clientId, null, null);
}
@VisibleForTesting // primarily TestNamenodeRetryCache
public Call(int id, int retryCount, Void ignore1, Void ignore2,
RPC.RpcKind kind, byte[] clientId) {
this(id, retryCount, kind, clientId, null, null);
}
Call(int id, int retryCount, RPC.RpcKind kind, byte[] clientId,
Span span, CallerContext callerContext) {
this.callId = id;
this.retryCount = retryCount;
this.timestampNanos = Time.monotonicNowNanos();
this.responseTimestampNanos = timestampNanos;
this.rpcKind = kind;
this.clientId = clientId;
this.span = span;
this.callerContext = callerContext;
this.clientStateId = Long.MIN_VALUE;
this.isCallCoordinated = false;
}
/**
* Indicates whether the call has been processed. Always true unless
* overridden.
*
* @return true
*/
boolean isOpen() {
return true;
}
String getDetailedMetricsName() {
return detailedMetricsName;
}
void setDetailedMetricsName(String name) {
detailedMetricsName = name;
}
public ProcessingDetails getProcessingDetails() {
return processingDetails;
}
public void setFederatedNamespaceState(ByteString federatedNamespaceState) {
this.federatedNamespaceState = federatedNamespaceState;
}
public ByteString getFederatedNamespaceState() {
return this.federatedNamespaceState;
}
@Override
public String toString() {
return "Call#" + callId + " Retry#" + retryCount;
}
@Override
public Void run() throws Exception {
return null;
}
// should eventually be abstract but need to avoid breaking tests
public UserGroupInformation getRemoteUser() {
return null;
}
public InetAddress getHostInetAddress() {
return null;
}
public int getRemotePort() {
return 0;
}
public String getHostAddress() {
InetAddress addr = getHostInetAddress();
return (addr != null) ? addr.getHostAddress() : null;
}
public String getProtocol() {
return null;
}
/**
* Allow a IPC response to be postponed instead of sent immediately
* after the handler returns from the proxy method. The intended use
* case is freeing up the handler thread when the response is known,
* but an expensive pre-condition must be satisfied before it's sent
* to the client.
*/
@InterfaceStability.Unstable
@InterfaceAudience.LimitedPrivate({"HDFS"})
public final void postponeResponse() {
int count = responseWaitCount.incrementAndGet();
assert count > 0 : "response has already been sent";
}
@InterfaceStability.Unstable
@InterfaceAudience.LimitedPrivate({"HDFS"})
public final void sendResponse() throws IOException {
int count = responseWaitCount.decrementAndGet();
assert count >= 0 : "response has already been sent";
if (count == 0) {
doResponse(null);
}
}
@InterfaceStability.Unstable
@InterfaceAudience.LimitedPrivate({"HDFS"})
public final void abortResponse(Throwable t) throws IOException {
// don't send response if the call was already sent or aborted.
if (responseWaitCount.getAndSet(-1) > 0) {
doResponse(t);
}
}
void doResponse(Throwable t) throws IOException {
doResponse(t, RpcStatusProto.FATAL);
}
void doResponse(Throwable t, RpcStatusProto proto) throws IOException {}
// For Schedulable
@Override
public UserGroupInformation getUserGroupInformation() {
return getRemoteUser();
}
@Override
public CallerContext getCallerContext() {
return this.callerContext;
}
@Override
public int getPriorityLevel() {
return this.priorityLevel;
}
public void setPriorityLevel(int priorityLevel) {
this.priorityLevel = priorityLevel;
}
public long getClientStateId() {
return this.clientStateId;
}
public void setClientStateId(long stateId) {
this.clientStateId = stateId;
}
public void markCallCoordinated(boolean flag) {
this.isCallCoordinated = flag;
}
public boolean isCallCoordinated() {
return this.isCallCoordinated;
}
@InterfaceStability.Unstable
public void deferResponse() {
this.deferredResponse = true;
}
@InterfaceStability.Unstable
public boolean isResponseDeferred() {
return this.deferredResponse;
}
public void setDeferredResponse(Writable response) {
}
public void setDeferredError(Throwable t) {
}
public long getTimestampNanos() {
return timestampNanos;
}
}
/** A RPC extended call queued for handling. */
private class RpcCall extends Call {
final Connection connection; // connection to client
final Writable rpcRequest; // Serialized Rpc request from client
ByteBuffer rpcResponse; // the response for this call
private ResponseParams responseParams; // the response params
private Writable rv; // the byte response
RpcCall(RpcCall call) {
super(call);
this.connection = call.connection;
this.rpcRequest = call.rpcRequest;
this.rv = call.rv;
this.responseParams = call.responseParams;
}
RpcCall(Connection connection, int id) {
this(connection, id, RpcConstants.INVALID_RETRY_COUNT);
}
RpcCall(Connection connection, int id, int retryCount) {
this(connection, id, retryCount, null,
RPC.RpcKind.RPC_BUILTIN, RpcConstants.DUMMY_CLIENT_ID,
null, null);
}
RpcCall(Connection connection, int id, int retryCount,
Writable param, RPC.RpcKind kind, byte[] clientId,
Span span, CallerContext context) {
super(id, retryCount, kind, clientId, span, context);
this.connection = connection;
this.rpcRequest = param;
}
@Override
boolean isOpen() {
return connection.channel.isOpen();
}
void setResponseFields(Writable returnValue,
ResponseParams responseParams) {
this.rv = returnValue;
this.responseParams = responseParams;
}
@Override
public String getProtocol() {
return "rpc";
}
@Override
public UserGroupInformation getRemoteUser() {
return connection.user;
}
@Override
public InetAddress getHostInetAddress() {
return connection.getHostInetAddress();
}
@Override
public int getRemotePort() {
return connection.getRemotePort();
}
@Override
public Void run() throws Exception {
if (!connection.channel.isOpen()) {
Server.LOG.info(Thread.currentThread().getName() + ": skipped " + this);
return null;
}
long startNanos = Time.monotonicNowNanos();
Writable value = null;
ResponseParams responseParams = new ResponseParams();
try {
value = call(
rpcKind, connection.protocolName, rpcRequest, getTimestampNanos());
} catch (Throwable e) {
populateResponseParamsOnError(e, responseParams);
}
if (!isResponseDeferred()) {
long deltaNanos = Time.monotonicNowNanos() - startNanos;
ProcessingDetails details = getProcessingDetails();
details.set(Timing.PROCESSING, deltaNanos, TimeUnit.NANOSECONDS);
deltaNanos -= details.get(Timing.LOCKWAIT, TimeUnit.NANOSECONDS);
deltaNanos -= details.get(Timing.LOCKSHARED, TimeUnit.NANOSECONDS);
deltaNanos -= details.get(Timing.LOCKEXCLUSIVE, TimeUnit.NANOSECONDS);
details.set(Timing.LOCKFREE, deltaNanos, TimeUnit.NANOSECONDS);
startNanos = Time.monotonicNowNanos();
setResponseFields(value, responseParams);
sendResponse();
details.setReturnStatus(responseParams.returnStatus);
deltaNanos = Time.monotonicNowNanos() - startNanos;
details.set(Timing.RESPONSE, deltaNanos, TimeUnit.NANOSECONDS);
} else {
LOG.debug("Deferring response for callId: {}", this.callId);
}
return null;
}
/**
* @param t the {@link java.lang.Throwable} to use to set
* errorInfo
* @param responseParams the {@link ResponseParams} instance to populate
*/
private void populateResponseParamsOnError(Throwable t,
ResponseParams responseParams) {
if (t instanceof UndeclaredThrowableException) {
t = t.getCause();
}
logException(Server.LOG, t, this);
if (t instanceof RpcServerException) {
RpcServerException rse = ((RpcServerException) t);
responseParams.returnStatus = rse.getRpcStatusProto();
responseParams.detailedErr = rse.getRpcErrorCodeProto();
} else {
responseParams.returnStatus = RpcStatusProto.ERROR;
responseParams.detailedErr = RpcErrorCodeProto.ERROR_APPLICATION;
}
responseParams.errorClass = t.getClass().getName();
responseParams.error = StringUtils.stringifyException(t);
// Remove redundant error class name from the beginning of the
// stack trace
String exceptionHdr = responseParams.errorClass + ": ";
if (responseParams.error.startsWith(exceptionHdr)) {
responseParams.error =
responseParams.error.substring(exceptionHdr.length());
}
}
void setResponse(ByteBuffer response) throws IOException {
this.rpcResponse = response;
}
@Override
void doResponse(Throwable t, RpcStatusProto status) throws IOException {
RpcCall call = this;
if (t != null) {
if (status == null) {
status = RpcStatusProto.FATAL;
}
// clone the call to prevent a race with another thread stomping
// on the response while being sent. the original call is
// effectively discarded since the wait count won't hit zero
call = new RpcCall(this);
setupResponse(call, status, RpcErrorCodeProto.ERROR_RPC_SERVER,
null, t.getClass().getName(), StringUtils.stringifyException(t));
} else {
setupResponse(call, call.responseParams.returnStatus,
call.responseParams.detailedErr, call.rv,
call.responseParams.errorClass,
call.responseParams.error);
}
connection.sendResponse(call);
}
/**
* Send a deferred response, ignoring errors.
*/
private void sendDeferedResponse() {
try {
connection.sendResponse(this);
} catch (Exception e) {
// For synchronous calls, application code is done once it's returned
// from a method. It does not expect to receive an error.
// This is equivalent to what happens in synchronous calls when the
// Responder is not able to send out the response.
LOG.error("Failed to send deferred response. ThreadName=" + Thread
.currentThread().getName() + ", CallId="
+ callId + ", hostname=" + getHostAddress());
}
}
@Override
public void setDeferredResponse(Writable response) {
if (this.connection.getServer().running) {
try {
setupResponse(this, RpcStatusProto.SUCCESS, null, response,
null, null);
} catch (IOException e) {
// For synchronous calls, application code is done once it has
// returned from a method. It does not expect to receive an error.
// This is equivalent to what happens in synchronous calls when the
// response cannot be sent.
LOG.error(
"Failed to setup deferred successful response. ThreadName=" +
Thread.currentThread().getName() + ", Call=" + this);
return;
}
sendDeferedResponse();
}
}
@Override
public void setDeferredError(Throwable t) {
if (this.connection.getServer().running) {
if (t == null) {
t = new IOException(
"User code indicated an error without an exception");
}
try {
ResponseParams responseParams = new ResponseParams();
populateResponseParamsOnError(t, responseParams);
setupResponse(this, responseParams.returnStatus,
responseParams.detailedErr,
null, responseParams.errorClass, responseParams.error);
} catch (IOException e) {
// For synchronous calls, application code is done once it has
// returned from a method. It does not expect to receive an error.
// This is equivalent to what happens in synchronous calls when the
// response cannot be sent.
LOG.error(
"Failed to setup deferred error response. ThreadName=" +
Thread.currentThread().getName() + ", Call=" + this);
}
sendDeferedResponse();
}
}
/**
* Holds response parameters. Defaults set to work for successful
* invocations
*/
private class ResponseParams {
String errorClass = null;
String error = null;
RpcErrorCodeProto detailedErr = null;
RpcStatusProto returnStatus = RpcStatusProto.SUCCESS;
}
@Override
public String toString() {
return super.toString() + " " + rpcRequest + " from " + connection;
}
}
/** Listens on the socket. Creates jobs for the handler threads*/
private class Listener extends Thread {
private ServerSocketChannel acceptChannel = null; //the accept channel
private Selector selector = null; //the selector that we use for the server
private Reader[] readers = null;
private int currentReader = 0;
private InetSocketAddress address; //the address we bind at
private int listenPort; //the port we bind at
private int backlogLength = conf.getInt(
CommonConfigurationKeysPublic.IPC_SERVER_LISTEN_QUEUE_SIZE_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_LISTEN_QUEUE_SIZE_DEFAULT);
private boolean reuseAddr = conf.getBoolean(
CommonConfigurationKeysPublic.IPC_SERVER_REUSEADDR_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_REUSEADDR_DEFAULT);
private boolean isOnAuxiliaryPort;
Listener(int port) throws IOException {
address = new InetSocketAddress(bindAddress, port);
// Create a new server socket and set to non blocking mode
acceptChannel = ServerSocketChannel.open();
acceptChannel.configureBlocking(false);
acceptChannel.setOption(StandardSocketOptions.SO_REUSEADDR, reuseAddr);
// Bind the server socket to the local host and port
bind(acceptChannel.socket(), address, backlogLength, conf, portRangeConfig);
//Could be an ephemeral port
this.listenPort = acceptChannel.socket().getLocalPort();
LOG.info("Listener at {}:{}", bindAddress, this.listenPort);
// create a selector;
selector= Selector.open();
readers = new Reader[readThreads];
for (int i = 0; i < readThreads; i++) {
Reader reader = new Reader(
"Socket Reader #" + (i + 1) + " for port " + port);
readers[i] = reader;
reader.start();
}
// Register accepts on the server socket with the selector.
acceptChannel.register(selector, SelectionKey.OP_ACCEPT);
this.setName("IPC Server listener on " + port);
this.setDaemon(true);
this.isOnAuxiliaryPort = false;
}
void setIsAuxiliary() {
this.isOnAuxiliaryPort = true;
}
private class Reader extends Thread {
final private BlockingQueue pendingConnections;
private final Selector readSelector;
Reader(String name) throws IOException {
super(name);
this.pendingConnections =
new LinkedBlockingQueue(readerPendingConnectionQueue);
this.readSelector = Selector.open();
}
@Override
public void run() {
LOG.info("Starting " + Thread.currentThread().getName());
try {
doRunLoop();
} finally {
try {
readSelector.close();
} catch (IOException ioe) {
LOG.error("Error closing read selector in " + Thread.currentThread().getName(), ioe);
}
}
}
private synchronized void doRunLoop() {
while (running) {
SelectionKey key = null;
try {
// consume as many connections as currently queued to avoid
// unbridled acceptance of connections that starves the select
int size = pendingConnections.size();
for (int i=size; i>0; i--) {
Connection conn = pendingConnections.take();
conn.channel.register(readSelector, SelectionKey.OP_READ, conn);
}
readSelector.select();
Iterator iter = readSelector.selectedKeys().iterator();
while (iter.hasNext()) {
key = iter.next();
iter.remove();
try {
if (key.isReadable()) {
doRead(key);
}
} catch (CancelledKeyException cke) {
// something else closed the connection, ex. responder or
// the listener doing an idle scan. ignore it and let them
// clean up.
LOG.info(Thread.currentThread().getName() +
": connection aborted from " + key.attachment());
}
key = null;
}
} catch (InterruptedException e) {
if (running) { // unexpected -- log it
LOG.info(Thread.currentThread().getName() + " unexpectedly interrupted", e);
}
} catch (IOException ex) {
LOG.error("Error in Reader", ex);
} catch (Throwable re) {
LOG.error("Bug in read selector!", re);
ExitUtil.terminate(1, "Bug in read selector!");
}
}
}
/**
* Updating the readSelector while it's being used is not thread-safe,
* so the connection must be queued. The reader will drain the queue
* and update its readSelector before performing the next select
*/
public void addConnection(Connection conn) throws InterruptedException {
pendingConnections.put(conn);
readSelector.wakeup();
}
void shutdown() {
assert !running;
readSelector.wakeup();
try {
super.interrupt();
super.join();
} catch (InterruptedException ie) {
Thread.currentThread().interrupt();
}
}
}
@Override
public void run() {
LOG.info(Thread.currentThread().getName() + ": starting");
SERVER.set(Server.this);
connectionManager.startIdleScan();
while (running) {
SelectionKey key = null;
try {
getSelector().select();
Iterator iter = getSelector().selectedKeys().iterator();
while (iter.hasNext()) {
key = iter.next();
iter.remove();
try {
if (key.isValid()) {
if (key.isAcceptable())
doAccept(key);
}
} catch (IOException e) {
}
key = null;
}
} catch (OutOfMemoryError e) {
// we can run out of memory if we have too many threads
// log the event and sleep for a minute and give
// some thread(s) a chance to finish
LOG.warn("Out of Memory in server select", e);
closeCurrentConnection(key, e);
connectionManager.closeIdle(true);
try { Thread.sleep(60000); } catch (Exception ie) {}
} catch (Exception e) {
closeCurrentConnection(key, e);
}
}
LOG.info("Stopping " + Thread.currentThread().getName());
synchronized (this) {
try {
acceptChannel.close();
selector.close();
} catch (IOException e) { }
selector= null;
acceptChannel= null;
// close all connections
connectionManager.stopIdleScan();
connectionManager.closeAll();
}
}
private void closeCurrentConnection(SelectionKey key, Throwable e) {
if (key != null) {
Connection c = (Connection)key.attachment();
if (c != null) {
closeConnection(c);
c = null;
}
}
}
InetSocketAddress getAddress() {
return (InetSocketAddress)acceptChannel.socket().getLocalSocketAddress();
}
void doAccept(SelectionKey key) throws InterruptedException, IOException, OutOfMemoryError {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel channel;
while ((channel = server.accept()) != null) {
channel.configureBlocking(false);
channel.socket().setTcpNoDelay(tcpNoDelay);
channel.socket().setKeepAlive(true);
Reader reader = getReader();
Connection c = connectionManager.register(channel,
this.listenPort, this.isOnAuxiliaryPort);
// If the connectionManager can't take it, close the connection.
if (c == null) {
if (channel.isOpen()) {
IOUtils.cleanupWithLogger(LOG, channel);
}
connectionManager.droppedConnections.getAndIncrement();
continue;
}
key.attach(c); // so closeCurrentConnection can get the object
reader.addConnection(c);
}
}
void doRead(SelectionKey key) throws InterruptedException {
int count;
Connection c = (Connection)key.attachment();
if (c == null) {
return;
}
c.setLastContact(Time.now());
try {
count = c.readAndProcess();
} catch (InterruptedException ieo) {
LOG.info(Thread.currentThread().getName() + ": readAndProcess caught InterruptedException", ieo);
throw ieo;
} catch (Exception e) {
// Any exceptions that reach here are fatal unexpected internal errors
// that could not be sent to the client.
LOG.info(Thread.currentThread().getName() +
": readAndProcess from client " + c +
" threw exception [" + e + "]", e);
count = -1; //so that the (count < 0) block is executed
}
// setupResponse will signal the connection should be closed when a
// fatal response is sent.
if (count < 0 || c.shouldClose()) {
closeConnection(c);
c = null;
}
else {
c.setLastContact(Time.now());
}
}
synchronized void doStop() {
if (selector != null) {
selector.wakeup();
Thread.yield();
}
if (acceptChannel != null) {
try {
acceptChannel.socket().close();
} catch (IOException e) {
LOG.info(Thread.currentThread().getName() + ":Exception in closing listener socket. " + e);
}
}
for (Reader r : readers) {
r.shutdown();
}
}
synchronized Selector getSelector() { return selector; }
// The method that will return the next reader to work with
// Simplistic implementation of round robin for now
Reader getReader() {
currentReader = (currentReader + 1) % readers.length;
return readers[currentReader];
}
}
// Sends responses of RPC back to clients.
private class Responder extends Thread {
private final Selector writeSelector;
private int pending; // connections waiting to register
Responder() throws IOException {
this.setName("IPC Server Responder");
this.setDaemon(true);
writeSelector = Selector.open(); // create a selector
pending = 0;
}
@Override
public void run() {
LOG.info(Thread.currentThread().getName() + ": starting");
SERVER.set(Server.this);
try {
doRunLoop();
} finally {
LOG.info("Stopping " + Thread.currentThread().getName());
try {
writeSelector.close();
} catch (IOException ioe) {
LOG.error("Couldn't close write selector in " + Thread.currentThread().getName(), ioe);
}
}
}
private void doRunLoop() {
long lastPurgeTimeNanos = 0; // last check for old calls.
while (running) {
try {
waitPending(); // If a channel is being registered, wait.
writeSelector.select(
TimeUnit.NANOSECONDS.toMillis(purgeIntervalNanos));
Iterator iter = writeSelector.selectedKeys().iterator();
while (iter.hasNext()) {
SelectionKey key = iter.next();
iter.remove();
try {
if (key.isWritable()) {
doAsyncWrite(key);
}
} catch (CancelledKeyException cke) {
// something else closed the connection, ex. reader or the
// listener doing an idle scan. ignore it and let them clean
// up
RpcCall call = (RpcCall)key.attachment();
if (call != null) {
LOG.info(Thread.currentThread().getName() +
": connection aborted from " + call.connection);
}
} catch (IOException e) {
LOG.info(Thread.currentThread().getName() + ": doAsyncWrite threw exception " + e);
}
}
long nowNanos = Time.monotonicNowNanos();
if (nowNanos < lastPurgeTimeNanos + purgeIntervalNanos) {
continue;
}
lastPurgeTimeNanos = nowNanos;
//
// If there were some calls that have not been sent out for a
// long time, discard them.
//
LOG.debug("Checking for old call responses.");
ArrayList calls;
// get the list of channels from list of keys.
synchronized (writeSelector.keys()) {
calls = new ArrayList(writeSelector.keys().size());
iter = writeSelector.keys().iterator();
while (iter.hasNext()) {
SelectionKey key = iter.next();
RpcCall call = (RpcCall)key.attachment();
if (call != null && key.channel() == call.connection.channel) {
calls.add(call);
}
}
}
for (RpcCall call : calls) {
doPurge(call, nowNanos);
}
} catch (OutOfMemoryError e) {
//
// we can run out of memory if we have too many threads
// log the event and sleep for a minute and give
// some thread(s) a chance to finish
//
LOG.warn("Out of Memory in server select", e);
try { Thread.sleep(60000); } catch (Exception ie) {}
} catch (Exception e) {
LOG.warn("Exception in Responder", e);
}
}
}
private void doAsyncWrite(SelectionKey key) throws IOException {
RpcCall call = (RpcCall)key.attachment();
if (call == null) {
return;
}
if (key.channel() != call.connection.channel) {
throw new IOException("doAsyncWrite: bad channel");
}
synchronized(call.connection.responseQueue) {
if (processResponse(call.connection.responseQueue, false)) {
try {
key.interestOps(0);
} catch (CancelledKeyException e) {
/* The Listener/reader might have closed the socket.
* We don't explicitly cancel the key, so not sure if this will
* ever fire.
* This warning could be removed.
*/
LOG.warn("Exception while changing ops : " + e);
}
}
}
}
//
// Remove calls that have been pending in the responseQueue
// for a long time.
//
private void doPurge(RpcCall call, long now) {
LinkedList responseQueue = call.connection.responseQueue;
synchronized (responseQueue) {
Iterator iter = responseQueue.listIterator(0);
while (iter.hasNext()) {
call = iter.next();
if (now > call.responseTimestampNanos + purgeIntervalNanos) {
closeConnection(call.connection);
break;
}
}
}
}
// Processes one response. Returns true if there are no more pending
// data for this channel.
//
private boolean processResponse(LinkedList responseQueue,
boolean inHandler) throws IOException {
boolean error = true;
boolean done = false; // there is more data for this channel.
int numElements = 0;
RpcCall call = null;
try {
synchronized (responseQueue) {
//
// If there are no items for this channel, then we are done
//
numElements = responseQueue.size();
if (numElements == 0) {
error = false;
return true; // no more data for this channel.
}
//
// Extract the first call
//
call = responseQueue.removeFirst();
SocketChannel channel = call.connection.channel;
LOG.debug("{}: responding to {}.", Thread.currentThread().getName(), call);
//
// Send as much data as we can in the non-blocking fashion
//
int numBytes = channelWrite(channel, call.rpcResponse);
if (numBytes < 0) {
return true;
}
if (!call.rpcResponse.hasRemaining()) {
//Clear out the response buffer so it can be collected
call.rpcResponse = null;
call.connection.decRpcCount();
if (numElements == 1) { // last call fully processes.
done = true; // no more data for this channel.
} else {
done = false; // more calls pending to be sent.
}
LOG.debug("{}: responding to {} Wrote {} bytes.",
Thread.currentThread().getName(), call, numBytes);
} else {
//
// If we were unable to write the entire response out, then
// insert in Selector queue.
//
call.connection.responseQueue.addFirst(call);
if (inHandler) {
// set the serve time when the response has to be sent later
call.responseTimestampNanos = Time.monotonicNowNanos();
incPending();
try {
// Wakeup the thread blocked on select, only then can the call
// to channel.register() complete.
writeSelector.wakeup();
channel.register(writeSelector, SelectionKey.OP_WRITE, call);
} catch (ClosedChannelException e) {
//Its ok. channel might be closed else where.
done = true;
} finally {
decPending();
}
}
LOG.debug("{}: responding to {} Wrote partial {} bytes.",
Thread.currentThread().getName(), call, numBytes);
}
error = false; // everything went off well
}
} finally {
if (error && call != null) {
LOG.warn(Thread.currentThread().getName()+", call " + call + ": output error");
done = true; // error. no more data for this channel.
closeConnection(call.connection);
}
}
return done;
}
//
// Enqueue a response from the application.
//
void doRespond(RpcCall call) throws IOException {
synchronized (call.connection.responseQueue) {
// must only wrap before adding to the responseQueue to prevent
// postponed responses from being encrypted and sent out of order.
if (call.connection.useWrap) {
wrapWithSasl(call);
}
call.connection.responseQueue.addLast(call);
if (call.connection.responseQueue.size() == 1) {
processResponse(call.connection.responseQueue, true);
}
}
}
private synchronized void incPending() { // call waiting to be enqueued.
pending++;
}
private synchronized void decPending() { // call done enqueueing.
pending--;
notify();
}
private synchronized void waitPending() throws InterruptedException {
while (pending > 0) {
wait();
}
}
}
@InterfaceAudience.Private
public enum AuthProtocol {
NONE(0),
SASL(-33);
public final int callId;
AuthProtocol(int callId) {
this.callId = callId;
}
static AuthProtocol valueOf(int callId) {
for (AuthProtocol authType : AuthProtocol.values()) {
if (authType.callId == callId) {
return authType;
}
}
return null;
}
};
/**
* Wrapper for RPC IOExceptions to be returned to the client. Used to
* let exceptions bubble up to top of processOneRpc where the correct
* callId can be associated with the response. Also used to prevent
* unnecessary stack trace logging if it's not an internal server error.
*/
@SuppressWarnings("serial")
private static class FatalRpcServerException extends RpcServerException {
private final RpcErrorCodeProto errCode;
public FatalRpcServerException(RpcErrorCodeProto errCode, IOException ioe) {
super(ioe.toString(), ioe);
this.errCode = errCode;
}
public FatalRpcServerException(RpcErrorCodeProto errCode, String message) {
this(errCode, new RpcServerException(message));
}
@Override
public RpcStatusProto getRpcStatusProto() {
return RpcStatusProto.FATAL;
}
@Override
public RpcErrorCodeProto getRpcErrorCodeProto() {
return errCode;
}
@Override
public String toString() {
return getCause().toString();
}
}
/** Reads calls from a connection and queues them for handling. */
public class Connection {
private boolean connectionHeaderRead = false; // connection header is read?
private boolean connectionContextRead = false; //if connection context that
//follows connection header is read
private SocketChannel channel;
private ByteBuffer data;
private final ByteBuffer dataLengthBuffer;
private LinkedList responseQueue;
// number of outstanding rpcs
private AtomicInteger rpcCount = new AtomicInteger();
private long lastContact;
private int dataLength;
private Socket socket;
// Cache the remote host & port info so that even if the socket is
// disconnected, we can say where it used to connect to.
/**
* Client Host IP address from where the socket connection is being established to the Server.
*/
private final String hostAddress;
/**
* Client remote port used for the given socket connection.
*/
private final int remotePort;
/**
* Address to which the socket is connected to.
*/
private final InetAddress addr;
IpcConnectionContextProto connectionContext;
String protocolName;
SaslServer saslServer;
private String establishedQOP;
private AuthMethod authMethod;
private AuthProtocol authProtocol;
private boolean saslContextEstablished;
private ByteBuffer connectionHeaderBuf = null;
private ByteBuffer unwrappedData;
private ByteBuffer unwrappedDataLengthBuffer;
private int serviceClass;
private boolean shouldClose = false;
private int ingressPort;
private boolean isOnAuxiliaryPort;
UserGroupInformation user = null;
public UserGroupInformation attemptingUser = null; // user name before auth
// Fake 'call' for failed authorization response
private final RpcCall authFailedCall =
new RpcCall(this, AUTHORIZATION_FAILED_CALL_ID);
private boolean sentNegotiate = false;
private boolean useWrap = false;
public Connection(SocketChannel channel, long lastContact,
int ingressPort, boolean isOnAuxiliaryPort) {
this.channel = channel;
this.lastContact = lastContact;
this.data = null;
// the buffer is initialized to read the "hrpc" and after that to read
// the length of the Rpc-packet (i.e 4 bytes)
this.dataLengthBuffer = ByteBuffer.allocate(4);
this.unwrappedData = null;
this.unwrappedDataLengthBuffer = ByteBuffer.allocate(4);
this.socket = channel.socket();
this.addr = socket.getInetAddress();
this.ingressPort = ingressPort;
this.isOnAuxiliaryPort = isOnAuxiliaryPort;
if (addr == null) {
this.hostAddress = "*Unknown*";
} else {
// host IP address
this.hostAddress = addr.getHostAddress();
}
this.remotePort = socket.getPort();
this.responseQueue = new LinkedList();
if (socketSendBufferSize != 0) {
try {
socket.setSendBufferSize(socketSendBufferSize);
} catch (IOException e) {
LOG.warn("Connection: unable to set socket send buffer size to " +
socketSendBufferSize);
}
}
}
@Override
public String toString() {
return hostAddress + ":" + remotePort;
}
boolean setShouldClose() {
return shouldClose = true;
}
boolean shouldClose() {
return shouldClose;
}
public String getHostAddress() {
return hostAddress;
}
public int getIngressPort() {
return ingressPort;
}
public int getRemotePort() {
return remotePort;
}
public InetAddress getHostInetAddress() {
return addr;
}
public String getEstablishedQOP() {
return establishedQOP;
}
public boolean isOnAuxiliaryPort() {
return isOnAuxiliaryPort;
}
public void setLastContact(long lastContact) {
this.lastContact = lastContact;
}
public long getLastContact() {
return lastContact;
}
public Server getServer() {
return Server.this;
}
/* Return true if the connection has no outstanding rpc */
private boolean isIdle() {
return rpcCount.get() == 0;
}
/* Decrement the outstanding RPC count */
private void decRpcCount() {
rpcCount.decrementAndGet();
}
/* Increment the outstanding RPC count */
private void incRpcCount() {
rpcCount.incrementAndGet();
}
private UserGroupInformation getAuthorizedUgi(String authorizedId)
throws InvalidToken, AccessControlException {
if (authMethod == AuthMethod.TOKEN) {
TokenIdentifier tokenId = SaslRpcServer.getIdentifier(authorizedId,
secretManager);
UserGroupInformation ugi = tokenId.getUser();
if (ugi == null) {
throw new AccessControlException(
"Can't retrieve username from tokenIdentifier.");
}
ugi.addTokenIdentifier(tokenId);
return ugi;
} else {
return UserGroupInformation.createRemoteUser(authorizedId, authMethod);
}
}
private void saslReadAndProcess(RpcWritable.Buffer buffer) throws
RpcServerException, IOException, InterruptedException {
final RpcSaslProto saslMessage =
getMessage(RpcSaslProto.getDefaultInstance(), buffer);
switch (saslMessage.getState()) {
case WRAP: {
if (!saslContextEstablished || !useWrap) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
new SaslException("Server is not wrapping data"));
}
// loops over decoded data and calls processOneRpc
unwrapPacketAndProcessRpcs(saslMessage.getToken().toByteArray());
break;
}
default:
saslProcess(saslMessage);
}
}
/**
* Some exceptions ({@link RetriableException} and {@link StandbyException})
* that are wrapped as a cause of parameter e are unwrapped so that they can
* be sent as the true cause to the client side. In case of
* {@link InvalidToken} we go one level deeper to get the true cause.
*
* @param e the exception that may have a cause we want to unwrap.
* @return the true cause for some exceptions.
*/
private Throwable getTrueCause(IOException e) {
Throwable cause = e;
while (cause != null) {
if (cause instanceof RetriableException) {
return cause;
} else if (cause instanceof StandbyException) {
return cause;
} else if (cause instanceof InvalidToken) {
// FIXME: hadoop method signatures are restricting the SASL
// callbacks to only returning InvalidToken, but some services
// need to throw other exceptions (ex. NN + StandyException),
// so for now we'll tunnel the real exceptions via an
// InvalidToken's cause which normally is not set
if (cause.getCause() != null) {
cause = cause.getCause();
}
return cause;
}
cause = cause.getCause();
}
return e;
}
/**
* Process saslMessage and send saslResponse back
* @param saslMessage received SASL message
* @throws RpcServerException setup failed due to SASL negotiation
* failure, premature or invalid connection context, or other state
* errors. This exception needs to be sent to the client. This
* exception will wrap {@link RetriableException},
* {@link InvalidToken}, {@link StandbyException} or
* {@link SaslException}.
* @throws IOException if sending reply fails
* @throws InterruptedException
*/
private void saslProcess(RpcSaslProto saslMessage)
throws RpcServerException, IOException, InterruptedException {
if (saslContextEstablished) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
new SaslException("Negotiation is already complete"));
}
RpcSaslProto saslResponse = null;
try {
try {
saslResponse = processSaslMessage(saslMessage);
} catch (IOException e) {
rpcMetrics.incrAuthenticationFailures();
if (LOG.isDebugEnabled()) {
LOG.debug(StringUtils.stringifyException(e));
}
// attempting user could be null
IOException tce = (IOException) getTrueCause(e);
AUDITLOG.warn(AUTH_FAILED_FOR + this.toString() + ":"
+ attemptingUser + " (" + e.getLocalizedMessage()
+ ") with true cause: (" + tce.getLocalizedMessage() + ")");
if (!UserGroupInformation.getLoginUser().isLoginSuccess()) {
doKerberosRelogin();
try {
// try processing message again
LOG.debug("Reprocessing sasl message for {}:{} after re-login",
this.toString(), attemptingUser);
saslResponse = processSaslMessage(saslMessage);
AUDITLOG.info("Retry {}{}:{} after failure", AUTH_SUCCESSFUL_FOR,
this.toString(), attemptingUser);
canTryForceLogin.set(true);
} catch (IOException exp) {
tce = (IOException) getTrueCause(e);
throw tce;
}
} else {
throw tce;
}
}
if (saslServer != null && saslServer.isComplete()) {
if (LOG.isDebugEnabled()) {
LOG.debug("SASL server context established. Negotiated QoP is {}.",
saslServer.getNegotiatedProperty(Sasl.QOP));
}
user = getAuthorizedUgi(saslServer.getAuthorizationID());
LOG.debug("SASL server successfully authenticated client: {}.", user);
rpcMetrics.incrAuthenticationSuccesses();
AUDITLOG.info(AUTH_SUCCESSFUL_FOR + user + " from " + toString());
saslContextEstablished = true;
}
} catch (RpcServerException rse) { // don't re-wrap
throw rse;
} catch (IOException ioe) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_UNAUTHORIZED, ioe);
}
// send back response if any, may throw IOException
if (saslResponse != null) {
doSaslReply(saslResponse);
}
// do NOT enable wrapping until the last auth response is sent
if (saslContextEstablished) {
String qop = (String) saslServer.getNegotiatedProperty(Sasl.QOP);
establishedQOP = qop;
// SASL wrapping is only used if the connection has a QOP, and
// the value is not auth. ex. auth-int & auth-priv
useWrap = (qop != null && !"auth".equalsIgnoreCase(qop));
if (!useWrap) {
disposeSasl();
}
}
}
/**
* Process a saslMessge.
* @param saslMessage received SASL message
* @return the sasl response to send back to client
* @throws SaslException if authentication or generating response fails,
* or SASL protocol mixup
* @throws IOException if a SaslServer cannot be created
* @throws AccessControlException if the requested authentication type
* is not supported or trying to re-attempt negotiation.
* @throws InterruptedException
*/
private RpcSaslProto processSaslMessage(RpcSaslProto saslMessage)
throws SaslException, IOException, AccessControlException,
InterruptedException {
final RpcSaslProto saslResponse;
final SaslState state = saslMessage.getState(); // required
switch (state) {
case NEGOTIATE: {
if (sentNegotiate) {
// FIXME shouldn't this be SaslException?
throw new AccessControlException(
"Client already attempted negotiation");
}
saslResponse = buildSaslNegotiateResponse();
// simple-only server negotiate response is success which client
// interprets as switch to simple
if (saslResponse.getState() == SaslState.SUCCESS) {
switchToSimple();
}
break;
}
case INITIATE: {
if (saslMessage.getAuthsCount() != 1) {
throw new SaslException("Client mechanism is malformed");
}
// verify the client requested an advertised authType
SaslAuth clientSaslAuth = saslMessage.getAuths(0);
if (!negotiateResponse.getAuthsList().contains(clientSaslAuth)) {
if (sentNegotiate) {
throw new AccessControlException(
clientSaslAuth.getMethod() + " authentication is not enabled."
+ " Available:" + enabledAuthMethods);
}
saslResponse = buildSaslNegotiateResponse();
break;
}
authMethod = AuthMethod.valueOf(clientSaslAuth.getMethod());
// abort SASL for SIMPLE auth, server has already ensured that
// SIMPLE is a legit option above. we will send no response
if (authMethod == AuthMethod.SIMPLE) {
switchToSimple();
saslResponse = null;
break;
}
// sasl server for tokens may already be instantiated
if (saslServer == null || authMethod != AuthMethod.TOKEN) {
saslServer = createSaslServer(authMethod);
}
saslResponse = processSaslToken(saslMessage);
break;
}
case RESPONSE: {
saslResponse = processSaslToken(saslMessage);
break;
}
default:
throw new SaslException("Client sent unsupported state " + state);
}
return saslResponse;
}
private RpcSaslProto processSaslToken(RpcSaslProto saslMessage)
throws SaslException {
if (!saslMessage.hasToken()) {
throw new SaslException("Client did not send a token");
}
byte[] saslToken = saslMessage.getToken().toByteArray();
LOG.debug("Have read input token of size {} for processing by saslServer.evaluateResponse()",
saslToken.length);
saslToken = saslServer.evaluateResponse(saslToken);
return buildSaslResponse(
saslServer.isComplete() ? SaslState.SUCCESS : SaslState.CHALLENGE,
saslToken);
}
private void switchToSimple() {
// disable SASL and blank out any SASL server
authProtocol = AuthProtocol.NONE;
disposeSasl();
}
private RpcSaslProto buildSaslResponse(SaslState state, byte[] replyToken) {
if (LOG.isDebugEnabled()) {
LOG.debug("Will send {} token of size {} from saslServer.", state,
((replyToken != null) ? replyToken.length : null));
}
RpcSaslProto.Builder response = RpcSaslProto.newBuilder();
response.setState(state);
if (replyToken != null) {
response.setToken(ByteString.copyFrom(replyToken));
}
return response.build();
}
private void doSaslReply(Message message) throws IOException {
final RpcCall saslCall = new RpcCall(this, AuthProtocol.SASL.callId);
setupResponse(saslCall,
RpcStatusProto.SUCCESS, null,
RpcWritable.wrap(message), null, null);
sendResponse(saslCall);
}
private void doSaslReply(Exception ioe) throws IOException {
setupResponse(authFailedCall,
RpcStatusProto.FATAL, RpcErrorCodeProto.FATAL_UNAUTHORIZED,
null, ioe.getClass().getName(), ioe.getMessage());
sendResponse(authFailedCall);
}
private void disposeSasl() {
if (saslServer != null) {
try {
saslServer.dispose();
} catch (SaslException ignored) {
} finally {
saslServer = null;
}
}
}
private void checkDataLength(int dataLength) throws IOException {
if (dataLength < 0) {
String error = "Unexpected data length " + dataLength +
"!! from " + getHostAddress();
LOG.warn(error);
throw new IOException(error);
} else if (dataLength > maxDataLength) {
String error = "Requested data length " + dataLength +
" is longer than maximum configured RPC length " +
maxDataLength + ". RPC came from " + getHostAddress();
LOG.warn(error);
throw new IOException(error);
}
}
/**
* This method reads in a non-blocking fashion from the channel:
* this method is called repeatedly when data is present in the channel;
* when it has enough data to process one rpc it processes that rpc.
*
* On the first pass, it processes the connectionHeader,
* connectionContext (an outOfBand RPC) and at most one RPC request that
* follows that. On future passes it will process at most one RPC request.
*
* Quirky things: dataLengthBuffer (4 bytes) is used to read "hrpc" OR
* rpc request length.
*
* @return -1 in case of error, else num bytes read so far
* @throws IOException - internal error that should not be returned to
* client, typically failure to respond to client
* @throws InterruptedException - if the thread is interrupted.
*/
public int readAndProcess() throws IOException, InterruptedException {
while (!shouldClose()) { // stop if a fatal response has been sent.
// dataLengthBuffer is used to read "hrpc" or the rpc-packet length
int count = -1;
if (dataLengthBuffer.remaining() > 0) {
count = channelRead(channel, dataLengthBuffer);
if (count < 0 || dataLengthBuffer.remaining() > 0)
return count;
}
if (!connectionHeaderRead) {
// Every connection is expected to send the header;
// so far we read "hrpc" of the connection header.
if (connectionHeaderBuf == null) {
// for the bytes that follow "hrpc", in the connection header
connectionHeaderBuf = ByteBuffer.allocate(HEADER_LEN_AFTER_HRPC_PART);
}
count = channelRead(channel, connectionHeaderBuf);
if (count < 0 || connectionHeaderBuf.remaining() > 0) {
return count;
}
int version = connectionHeaderBuf.get(0);
// TODO we should add handler for service class later
this.setServiceClass(connectionHeaderBuf.get(1));
dataLengthBuffer.flip();
// Check if it looks like the user is hitting an IPC port
// with an HTTP GET - this is a common error, so we can
// send back a simple string indicating as much.
if (HTTP_GET_BYTES.equals(dataLengthBuffer)) {
setupHttpRequestOnIpcPortResponse();
return -1;
}
if (!RpcConstants.HEADER.equals(dataLengthBuffer)) {
final String hostName = addr == null ? this.hostAddress : addr.getHostName();
LOG.warn("Incorrect RPC Header length from {}:{} / {}:{}. Expected: {}. Actual: {}",
hostName, remotePort, hostAddress, remotePort, RpcConstants.HEADER,
dataLengthBuffer);
setupBadVersionResponse(version);
return -1;
}
if (version != CURRENT_VERSION) {
final String hostName = addr == null ? this.hostAddress : addr.getHostName();
//Warning is ok since this is not supposed to happen.
LOG.warn("Version mismatch from {}:{} / {}:{}. "
+ "Expected version: {}. Actual version: {} ", hostName,
remotePort, hostAddress, remotePort, CURRENT_VERSION, version);
setupBadVersionResponse(version);
return -1;
}
// this may switch us into SIMPLE
authProtocol = initializeAuthContext(connectionHeaderBuf.get(2));
dataLengthBuffer.clear(); // clear to next read rpc packet len
connectionHeaderBuf = null;
connectionHeaderRead = true;
continue; // connection header read, now read 4 bytes rpc packet len
}
if (data == null) { // just read 4 bytes - length of RPC packet
dataLengthBuffer.flip();
dataLength = dataLengthBuffer.getInt();
checkDataLength(dataLength);
// Set buffer for reading EXACTLY the RPC-packet length and no more.
data = ByteBuffer.allocate(dataLength);
}
// Now read the RPC packet
count = channelRead(channel, data);
if (data.remaining() == 0) {
dataLengthBuffer.clear(); // to read length of future rpc packets
data.flip();
ByteBuffer requestData = data;
data = null; // null out in case processOneRpc throws.
boolean isHeaderRead = connectionContextRead;
processOneRpc(requestData);
// the last rpc-request we processed could have simply been the
// connectionContext; if so continue to read the first RPC.
if (!isHeaderRead) {
continue;
}
}
return count;
}
return -1;
}
private AuthProtocol initializeAuthContext(int authType)
throws IOException {
AuthProtocol authProtocol = AuthProtocol.valueOf(authType);
if (authProtocol == null) {
IOException ioe = new IpcException("Unknown auth protocol:" + authType);
doSaslReply(ioe);
throw ioe;
}
boolean isSimpleEnabled = enabledAuthMethods.contains(AuthMethod.SIMPLE);
switch (authProtocol) {
case NONE: {
// don't reply if client is simple and server is insecure
if (!isSimpleEnabled) {
IOException ioe = new AccessControlException(
"SIMPLE authentication is not enabled."
+ " Available:" + enabledAuthMethods);
doSaslReply(ioe);
throw ioe;
}
break;
}
default: {
break;
}
}
return authProtocol;
}
/**
* Process the Sasl's Negotiate request, including the optimization of
* accelerating token negotiation.
* @return the response to Negotiate request - the list of enabled
* authMethods and challenge if the TOKENS are supported.
* @throws SaslException - if attempt to generate challenge fails.
* @throws IOException - if it fails to create the SASL server for Tokens
*/
private RpcSaslProto buildSaslNegotiateResponse()
throws InterruptedException, SaslException, IOException {
RpcSaslProto negotiateMessage = negotiateResponse;
// accelerate token negotiation by sending initial challenge
// in the negotiation response
if (enabledAuthMethods.contains(AuthMethod.TOKEN)) {
saslServer = createSaslServer(AuthMethod.TOKEN);
byte[] challenge = saslServer.evaluateResponse(new byte[0]);
RpcSaslProto.Builder negotiateBuilder =
RpcSaslProto.newBuilder(negotiateResponse);
negotiateBuilder.getAuthsBuilder(0) // TOKEN is always first
.setChallenge(ByteString.copyFrom(challenge));
negotiateMessage = negotiateBuilder.build();
}
sentNegotiate = true;
return negotiateMessage;
}
private SaslServer createSaslServer(AuthMethod authMethod)
throws IOException, InterruptedException {
final Map saslProps =
saslPropsResolver.getServerProperties(addr, ingressPort);
return new SaslRpcServer(authMethod).create(this, saslProps, secretManager);
}
/**
* Try to set up the response to indicate that the client version
* is incompatible with the server. This can contain special-case
* code to speak enough of past IPC protocols to pass back
* an exception to the caller.
* @param clientVersion the version the caller is using
* @throws IOException
*/
private void setupBadVersionResponse(int clientVersion) throws IOException {
String errMsg = "Server IPC version " + CURRENT_VERSION +
" cannot communicate with client version " + clientVersion;
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
if (clientVersion >= 9) {
// Versions >>9 understand the normal response
RpcCall fakeCall = new RpcCall(this, -1);
setupResponse(fakeCall,
RpcStatusProto.FATAL, RpcErrorCodeProto.FATAL_VERSION_MISMATCH,
null, VersionMismatch.class.getName(), errMsg);
sendResponse(fakeCall);
} else if (clientVersion >= 3) {
RpcCall fakeCall = new RpcCall(this, -1);
// Versions 3 to 8 use older response
setupResponseOldVersionFatal(buffer, fakeCall,
null, VersionMismatch.class.getName(), errMsg);
sendResponse(fakeCall);
} else if (clientVersion == 2) { // Hadoop 0.18.3
RpcCall fakeCall = new RpcCall(this, 0);
DataOutputStream out = new DataOutputStream(buffer);
out.writeInt(0); // call ID
out.writeBoolean(true); // error
WritableUtils.writeString(out, VersionMismatch.class.getName());
WritableUtils.writeString(out, errMsg);
fakeCall.setResponse(ByteBuffer.wrap(buffer.toByteArray()));
sendResponse(fakeCall);
}
}
private void setupHttpRequestOnIpcPortResponse() throws IOException {
RpcCall fakeCall = new RpcCall(this, 0);
fakeCall.setResponse(ByteBuffer.wrap(
RECEIVED_HTTP_REQ_RESPONSE.getBytes(StandardCharsets.UTF_8)));
sendResponse(fakeCall);
}
/** Reads the connection context following the connection header
* @throws RpcServerException - if the header cannot be
* deserialized, or the user is not authorized
*/
private void processConnectionContext(RpcWritable.Buffer buffer)
throws RpcServerException {
// allow only one connection context during a session
if (connectionContextRead) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
"Connection context already processed");
}
connectionContext = getMessage(IpcConnectionContextProto.getDefaultInstance(), buffer);
protocolName = connectionContext.hasProtocol() ? connectionContext
.getProtocol() : null;
UserGroupInformation protocolUser = ProtoUtil.getUgi(connectionContext);
if (authProtocol == AuthProtocol.NONE) {
user = protocolUser;
} else {
// user is authenticated
user.setAuthenticationMethod(authMethod);
//Now we check if this is a proxy user case. If the protocol user is
//different from the 'user', it is a proxy user scenario. However,
//this is not allowed if user authenticated with DIGEST.
if ((protocolUser != null)
&& (!protocolUser.getUserName().equals(user.getUserName()))) {
if (authMethod == AuthMethod.TOKEN) {
// Not allowed to doAs if token authentication is used
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_UNAUTHORIZED,
new AccessControlException("Authenticated user (" + user
+ ") doesn't match what the client claims to be ("
+ protocolUser + ")"));
} else {
// Effective user can be different from authenticated user
// for simple auth or kerberos auth
// The user is the real user. Now we create a proxy user
UserGroupInformation realUser = user;
user = UserGroupInformation.createProxyUser(protocolUser
.getUserName(), realUser);
}
}
}
authorizeConnection();
// don't set until after authz because connection isn't established
connectionContextRead = true;
if (user != null) {
connectionManager.incrUserConnections(user.getShortUserName());
}
}
/**
* Process a wrapped RPC Request - unwrap the SASL packet and process
* each embedded RPC request
* @param inBuf - SASL wrapped request of one or more RPCs
* @throws IOException - SASL packet cannot be unwrapped
* @throws InterruptedException
*/
private void unwrapPacketAndProcessRpcs(byte[] inBuf)
throws IOException, InterruptedException {
LOG.debug("Have read input token of size {} for processing by saslServer.unwrap()",
inBuf.length);
inBuf = saslServer.unwrap(inBuf, 0, inBuf.length);
ReadableByteChannel ch = Channels.newChannel(new ByteArrayInputStream(
inBuf));
// Read all RPCs contained in the inBuf, even partial ones
while (!shouldClose()) { // stop if a fatal response has been sent.
int count = -1;
if (unwrappedDataLengthBuffer.remaining() > 0) {
count = channelRead(ch, unwrappedDataLengthBuffer);
if (count <= 0 || unwrappedDataLengthBuffer.remaining() > 0)
return;
}
if (unwrappedData == null) {
unwrappedDataLengthBuffer.flip();
int unwrappedDataLength = unwrappedDataLengthBuffer.getInt();
unwrappedData = ByteBuffer.allocate(unwrappedDataLength);
}
count = channelRead(ch, unwrappedData);
if (count <= 0 || unwrappedData.remaining() > 0)
return;
if (unwrappedData.remaining() == 0) {
unwrappedDataLengthBuffer.clear();
unwrappedData.flip();
ByteBuffer requestData = unwrappedData;
unwrappedData = null; // null out in case processOneRpc throws.
processOneRpc(requestData);
}
}
}
/**
* Process one RPC Request from buffer read from socket stream
* - decode rpc in a rpc-Call
* - handle out-of-band RPC requests such as the initial connectionContext
* - A successfully decoded RpcCall will be deposited in RPC-Q and
* its response will be sent later when the request is processed.
*
* Prior to this call the connectionHeader ("hrpc...") has been handled and
* if SASL then SASL has been established and the buf we are passed
* has been unwrapped from SASL.
*
* @param bb - contains the RPC request header and the rpc request
* @throws IOException - internal error that should not be returned to
* client, typically failure to respond to client
* @throws InterruptedException
*/
private void processOneRpc(ByteBuffer bb)
throws IOException, InterruptedException {
// exceptions that escape this method are fatal to the connection.
// setupResponse will use the rpc status to determine if the connection
// should be closed.
int callId = -1;
int retry = RpcConstants.INVALID_RETRY_COUNT;
try {
final RpcWritable.Buffer buffer = RpcWritable.Buffer.wrap(bb);
final RpcRequestHeaderProto header =
getMessage(RpcRequestHeaderProto.getDefaultInstance(), buffer);
callId = header.getCallId();
retry = header.getRetryCount();
LOG.debug(" got #{}", callId);
checkRpcHeaders(header);
if (callId < 0) { // callIds typically used during connection setup
processRpcOutOfBandRequest(header, buffer);
} else if (!connectionContextRead) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
"Connection context not established");
} else {
processRpcRequest(header, buffer);
}
} catch (RpcServerException rse) {
// inform client of error, but do not rethrow else non-fatal
// exceptions will close connection!
LOG.debug("{}: processOneRpc from client {} threw exception [{}]",
Thread.currentThread().getName(), this, rse);
// use the wrapped exception if there is one.
Throwable t = (rse.getCause() != null) ? rse.getCause() : rse;
final RpcCall call = new RpcCall(this, callId, retry);
setupResponse(call,
rse.getRpcStatusProto(), rse.getRpcErrorCodeProto(), null,
t.getClass().getName(), t.getMessage());
sendResponse(call);
}
}
/**
* Verify RPC header is valid
* @param header - RPC request header
* @throws RpcServerException - header contains invalid values
*/
private void checkRpcHeaders(RpcRequestHeaderProto header)
throws RpcServerException {
if (!header.hasRpcOp()) {
String err = " IPC Server: No rpc op in rpcRequestHeader";
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER, err);
}
if (header.getRpcOp() !=
RpcRequestHeaderProto.OperationProto.RPC_FINAL_PACKET) {
String err = "IPC Server does not implement rpc header operation" +
header.getRpcOp();
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER, err);
}
// If we know the rpc kind, get its class so that we can deserialize
// (Note it would make more sense to have the handler deserialize but
// we continue with this original design.
if (!header.hasRpcKind()) {
String err = " IPC Server: No rpc kind in rpcRequestHeader";
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER, err);
}
}
/**
* Process an RPC Request
* - the connection headers and context must have been already read.
* - Based on the rpcKind, decode the rpcRequest.
* - A successfully decoded RpcCall will be deposited in RPC-Q and
* its response will be sent later when the request is processed.
* @param header - RPC request header
* @param buffer - stream to request payload
* @throws RpcServerException - generally due to fatal rpc layer issues
* such as invalid header or deserialization error. The call queue
* may also throw a fatal or non-fatal exception on overflow.
* @throws IOException - fatal internal error that should/could not
* be sent to client.
* @throws InterruptedException
*/
private void processRpcRequest(RpcRequestHeaderProto header,
RpcWritable.Buffer buffer) throws RpcServerException,
InterruptedException {
Class extends Writable> rpcRequestClass =
getRpcRequestWrapper(header.getRpcKind());
if (rpcRequestClass == null) {
LOG.warn("Unknown rpc kind " + header.getRpcKind() +
" from client " + getHostAddress());
final String err = "Unknown rpc kind in rpc header" +
header.getRpcKind();
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER, err);
}
Writable rpcRequest;
try { //Read the rpc request
rpcRequest = buffer.newInstance(rpcRequestClass, conf);
} catch (RpcServerException rse) { // lets tests inject failures.
throw rse;
} catch (Throwable t) { // includes runtime exception from newInstance
LOG.warn("Unable to read call parameters for client " +
getHostAddress() + "on connection protocol " +
this.protocolName + " for rpcKind " + header.getRpcKind(), t);
String err = "IPC server unable to read call parameters: "+ t.getMessage();
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_DESERIALIZING_REQUEST, err);
}
Span span = null;
if (header.hasTraceInfo()) {
RPCTraceInfoProto traceInfoProto = header.getTraceInfo();
if (traceInfoProto.hasSpanContext()) {
if (tracer == null) {
setTracer(Tracer.curThreadTracer());
}
if (tracer != null) {
// If the incoming RPC included tracing info, always continue the
// trace
SpanContext spanCtx = TraceUtils.byteStringToSpanContext(
traceInfoProto.getSpanContext());
if (spanCtx != null) {
span = tracer.newSpan(
RpcClientUtil.toTraceName(rpcRequest.toString()), spanCtx);
}
}
}
}
CallerContext callerContext = null;
if (header.hasCallerContext()) {
callerContext =
new CallerContext.Builder(header.getCallerContext().getContext())
.setSignature(header.getCallerContext().getSignature()
.toByteArray())
.build();
}
RpcCall call = new RpcCall(this, header.getCallId(),
header.getRetryCount(), rpcRequest,
ProtoUtil.convert(header.getRpcKind()),
header.getClientId().toByteArray(), span, callerContext);
// Save the priority level assignment by the scheduler
call.setPriorityLevel(callQueue.getPriorityLevel(call));
call.markCallCoordinated(false);
if(alignmentContext != null && call.rpcRequest != null &&
(call.rpcRequest instanceof ProtobufRpcEngine2.RpcProtobufRequest)) {
// if call.rpcRequest is not RpcProtobufRequest, will skip the following
// step and treat the call as uncoordinated. As currently only certain
// ClientProtocol methods request made through RPC protobuf needs to be
// coordinated.
String methodName;
String protoName;
ProtobufRpcEngine2.RpcProtobufRequest req =
(ProtobufRpcEngine2.RpcProtobufRequest) call.rpcRequest;
try {
methodName = req.getRequestHeader().getMethodName();
protoName = req.getRequestHeader().getDeclaringClassProtocolName();
if (alignmentContext.isCoordinatedCall(protoName, methodName)) {
call.markCallCoordinated(true);
long stateId;
stateId = alignmentContext.receiveRequestState(
header, getMaxIdleTime());
call.setClientStateId(stateId);
if (header.hasRouterFederatedState()) {
call.setFederatedNamespaceState(header.getRouterFederatedState());
}
}
} catch (IOException ioe) {
throw new RpcServerException("Processing RPC request caught ", ioe);
}
}
try {
internalQueueCall(call);
} catch (RpcServerException rse) {
throw rse;
} catch (IOException ioe) {
throw new FatalRpcServerException(
RpcErrorCodeProto.ERROR_RPC_SERVER, ioe);
}
incRpcCount(); // Increment the rpc count
}
/**
* Establish RPC connection setup by negotiating SASL if required, then
* reading and authorizing the connection header
* @param header - RPC header
* @param buffer - stream to request payload
* @throws RpcServerException - setup failed due to SASL
* negotiation failure, premature or invalid connection context,
* or other state errors. This exception needs to be sent to the
* client.
* @throws IOException - failed to send a response back to the client
* @throws InterruptedException
*/
private void processRpcOutOfBandRequest(RpcRequestHeaderProto header,
RpcWritable.Buffer buffer) throws RpcServerException,
IOException, InterruptedException {
final int callId = header.getCallId();
if (callId == CONNECTION_CONTEXT_CALL_ID) {
// SASL must be established prior to connection context
if (authProtocol == AuthProtocol.SASL && !saslContextEstablished) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
"Connection header sent during SASL negotiation");
}
// read and authorize the user
processConnectionContext(buffer);
} else if (callId == AuthProtocol.SASL.callId) {
// if client was switched to simple, ignore first SASL message
if (authProtocol != AuthProtocol.SASL) {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
"SASL protocol not requested by client");
}
saslReadAndProcess(buffer);
} else if (callId == PING_CALL_ID) {
LOG.debug("Received ping message");
} else {
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_INVALID_RPC_HEADER,
"Unknown out of band call #" + callId);
}
}
/**
* Authorize proxy users to access this server
* @throws RpcServerException - user is not allowed to proxy
*/
private void authorizeConnection() throws RpcServerException {
try {
// If auth method is TOKEN, the token was obtained by the
// real user for the effective user, therefore not required to
// authorize real user. doAs is allowed only for simple or kerberos
// authentication
if (user != null && user.getRealUser() != null
&& (authMethod != AuthMethod.TOKEN)) {
ProxyUsers.authorize(user, this.getHostAddress());
}
authorize(user, protocolName, getHostInetAddress());
LOG.debug("Successfully authorized {}.", connectionContext);
rpcMetrics.incrAuthorizationSuccesses();
} catch (AuthorizationException ae) {
LOG.info("Connection from " + this
+ " for protocol " + connectionContext.getProtocol()
+ " is unauthorized for user " + user);
rpcMetrics.incrAuthorizationFailures();
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_UNAUTHORIZED, ae);
}
}
/**
* Decode the a protobuf from the given input stream
* @return Message - decoded protobuf
* @throws RpcServerException - deserialization failed
*/
@SuppressWarnings("unchecked")
T getMessage(Message message,
RpcWritable.Buffer buffer) throws RpcServerException {
try {
return (T)buffer.getValue(message);
} catch (Exception ioe) {
Class> protoClass = message.getClass();
throw new FatalRpcServerException(
RpcErrorCodeProto.FATAL_DESERIALIZING_REQUEST,
"Error decoding " + protoClass.getSimpleName() + ": "+ ioe);
}
}
// ipc reader threads should invoke this directly, whereas handlers
// must invoke call.sendResponse to allow lifecycle management of
// external, postponed, deferred calls, etc.
private void sendResponse(RpcCall call) throws IOException {
responder.doRespond(call);
}
/**
* Get service class for connection
* @return the serviceClass
*/
public int getServiceClass() {
return serviceClass;
}
/**
* Set service class for connection
* @param serviceClass the serviceClass to set
*/
public void setServiceClass(int serviceClass) {
this.serviceClass = serviceClass;
}
private synchronized void close() {
disposeSasl();
data = null;
if (!channel.isOpen())
return;
try {socket.shutdownOutput();} catch(Exception e) {
LOG.debug("Ignoring socket shutdown exception", e);
}
if (channel.isOpen()) {
IOUtils.cleanupWithLogger(LOG, channel);
}
IOUtils.cleanupWithLogger(LOG, socket);
}
}
public void queueCall(Call call) throws IOException, InterruptedException {
// external non-rpc calls don't need server exception wrapper.
try {
internalQueueCall(call);
} catch (RpcServerException rse) {
throw (IOException)rse.getCause();
}
}
private void internalQueueCall(Call call)
throws IOException, InterruptedException {
internalQueueCall(call, true);
}
private void internalQueueCall(Call call, boolean blocking)
throws IOException, InterruptedException {
try {
// queue the call, may be blocked if blocking is true.
if (blocking) {
callQueue.put(call);
} else {
callQueue.add(call);
}
long deltaNanos = Time.monotonicNowNanos() - call.timestampNanos;
call.getProcessingDetails().set(Timing.ENQUEUE, deltaNanos,
TimeUnit.NANOSECONDS);
} catch (CallQueueOverflowException cqe) {
// If rpc scheduler indicates back off based on performance degradation
// such as response time or rpc queue is full, we will ask the client
// to back off by throwing RetriableException. Whether the client will
// honor RetriableException and retry depends the client and its policy.
// For example, IPC clients using FailoverOnNetworkExceptionRetry handle
// RetriableException.
rpcMetrics.incrClientBackoff();
// Clients that are directly put into lowest priority queue are backed off and disconnected.
if (cqe.getCause() instanceof RpcServerException) {
RpcServerException ex = (RpcServerException) cqe.getCause();
if (ex.getRpcStatusProto() == RpcStatusProto.FATAL) {
rpcMetrics.incrClientBackoffDisconnected();
}
}
// unwrap retriable exception.
throw cqe.getCause();
}
}
/** Handles queued calls . */
private class Handler extends Thread {
public Handler(int instanceNumber) {
this.setDaemon(true);
this.setName("IPC Server handler "+ instanceNumber +
" on default port " + port);
}
@Override
public void run() {
LOG.debug("{}: starting", Thread.currentThread().getName());
SERVER.set(Server.this);
while (running) {
TraceScope traceScope = null;
Call call = null;
long startTimeNanos = 0;
// True iff the connection for this call has been dropped.
// Set to true by default and update to false later if the connection
// can be succesfully read.
boolean connDropped = true;
try {
call = callQueue.take(); // pop the queue; maybe blocked here
numInProcessHandler.incrementAndGet();
startTimeNanos = Time.monotonicNowNanos();
if (alignmentContext != null && call.isCallCoordinated() &&
call.getClientStateId() > alignmentContext.getLastSeenStateId()) {
/*
* The call processing should be postponed until the client call's
* state id is aligned (<=) with the server state id.
* NOTE:
* Inserting the call back to the queue can change the order of call
* execution comparing to their original placement into the queue.
* This is not a problem, because Hadoop RPC does not have any
* constraints on ordering the incoming rpc requests.
* In case of Observer, it handles only reads, which are
* commutative.
*/
// Re-queue the call and continue
requeueCall(call);
call = null;
continue;
}
LOG.debug("{}: {} for RpcKind {}.", Thread.currentThread().getName(), call, call.rpcKind);
CurCall.set(call);
if (call.span != null) {
traceScope = tracer.activateSpan(call.span);
call.span.addTimelineAnnotation("called");
}
// always update the current call context
CallerContext.setCurrent(call.callerContext);
UserGroupInformation remoteUser = call.getRemoteUser();
connDropped = !call.isOpen();
if (remoteUser != null) {
remoteUser.doAs(call);
} else {
call.run();
}
} catch (InterruptedException e) {
if (running) { // unexpected -- log it
LOG.info(Thread.currentThread().getName() + " unexpectedly interrupted", e);
if (traceScope != null) {
traceScope.addTimelineAnnotation("unexpectedly interrupted: " +
StringUtils.stringifyException(e));
}
}
} catch (Exception e) {
LOG.info(Thread.currentThread().getName() + " caught an exception", e);
if (traceScope != null) {
traceScope.addTimelineAnnotation("Exception: " +
StringUtils.stringifyException(e));
}
} finally {
CurCall.set(null);
numInProcessHandler.decrementAndGet();
IOUtils.cleanupWithLogger(LOG, traceScope);
if (call != null) {
updateMetrics(call, startTimeNanos, connDropped);
ProcessingDetails.LOG.debug("Served: [{}]{} name={} user={} details={}",
call, (call.isResponseDeferred() ? ", deferred" : ""),
call.getDetailedMetricsName(), call.getRemoteUser(),
call.getProcessingDetails());
}
}
}
LOG.debug("{}: exiting", Thread.currentThread().getName());
}
private void requeueCall(Call call)
throws IOException, InterruptedException {
try {
internalQueueCall(call, false);
rpcMetrics.incrRequeueCalls();
} catch (RpcServerException rse) {
call.doResponse(rse.getCause(), rse.getRpcStatusProto());
}
}
}
@VisibleForTesting
void logException(Logger logger, Throwable e, Call call) {
if (exceptionsHandler.isSuppressedLog(e.getClass())) {
return; // Log nothing.
}
final String logMsg = Thread.currentThread().getName() + ", call " + call;
if (exceptionsHandler.isTerseLog(e.getClass())) {
// Don't log the whole stack trace. Way too noisy!
logger.info(logMsg + ": " + e);
} else if (e instanceof RuntimeException || e instanceof Error) {
// These exception types indicate something is probably wrong
// on the server side, as opposed to just a normal exceptional
// result.
logger.warn(logMsg, e);
} else {
logger.info(logMsg, e);
}
}
protected Server(String bindAddress, int port,
Class extends Writable> paramClass, int handlerCount,
Configuration conf)
throws IOException
{
this(bindAddress, port, paramClass, handlerCount, -1, -1, conf, Integer
.toString(port), null, null);
}
protected Server(String bindAddress, int port,
Class extends Writable> rpcRequestClass, int handlerCount,
int numReaders, int queueSizePerHandler, Configuration conf,
String serverName, SecretManager extends TokenIdentifier> secretManager)
throws IOException {
this(bindAddress, port, rpcRequestClass, handlerCount, numReaders,
queueSizePerHandler, conf, serverName, secretManager, null);
}
/**
* Constructs a server listening on the named port and address. Parameters passed must
* be of the named class. The handlerCount
determines
* the number of handler threads that will be used to process calls.
* If queueSizePerHandler or numReaders are not -1 they will be used instead of parameters
* from configuration. Otherwise the configuration will be picked up.
*
* If rpcRequestClass is null then the rpcRequestClass must have been
* registered via {@link #registerProtocolEngine(RPC.RpcKind,
* Class, RPC.RpcInvoker)}
* This parameter has been retained for compatibility with existing tests
* and usage.
*
* @param bindAddress input bindAddress.
* @param port input port.
* @param rpcRequestClass input rpcRequestClass.
* @param handlerCount input handlerCount.
* @param numReaders input numReaders.
* @param queueSizePerHandler input queueSizePerHandler.
* @param conf input Configuration.
* @param serverName input serverName.
* @param secretManager input secretManager.
* @param portRangeConfig input portRangeConfig.
* @throws IOException raised on errors performing I/O.
*/
@SuppressWarnings("unchecked")
protected Server(String bindAddress, int port,
Class extends Writable> rpcRequestClass, int handlerCount,
int numReaders, int queueSizePerHandler, Configuration conf,
String serverName, SecretManager extends TokenIdentifier> secretManager,
String portRangeConfig)
throws IOException {
this.bindAddress = bindAddress;
this.conf = conf;
this.portRangeConfig = portRangeConfig;
this.port = port;
this.rpcRequestClass = rpcRequestClass;
this.handlerCount = handlerCount;
this.socketSendBufferSize = 0;
this.serverName = serverName;
this.auxiliaryListenerMap = null;
this.maxDataLength = conf.getInt(CommonConfigurationKeys.IPC_MAXIMUM_DATA_LENGTH,
CommonConfigurationKeys.IPC_MAXIMUM_DATA_LENGTH_DEFAULT);
if (queueSizePerHandler != -1) {
this.maxQueueSize = handlerCount * queueSizePerHandler;
} else {
this.maxQueueSize = handlerCount * conf.getInt(
CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_KEY,
CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_DEFAULT);
}
this.maxRespSize = conf.getInt(
CommonConfigurationKeys.IPC_SERVER_RPC_MAX_RESPONSE_SIZE_KEY,
CommonConfigurationKeys.IPC_SERVER_RPC_MAX_RESPONSE_SIZE_DEFAULT);
if (numReaders != -1) {
this.readThreads = numReaders;
} else {
this.readThreads = conf.getInt(
CommonConfigurationKeys.IPC_SERVER_RPC_READ_THREADS_KEY,
CommonConfigurationKeys.IPC_SERVER_RPC_READ_THREADS_DEFAULT);
}
this.readerPendingConnectionQueue = conf.getInt(
CommonConfigurationKeys.IPC_SERVER_RPC_READ_CONNECTION_QUEUE_SIZE_KEY,
CommonConfigurationKeys.IPC_SERVER_RPC_READ_CONNECTION_QUEUE_SIZE_DEFAULT);
// Setup appropriate callqueue
final String prefix = getQueueClassPrefix();
this.callQueue = new CallQueueManager<>(
getQueueClass(CommonConfigurationKeys.IPC_NAMESPACE, port, conf),
getSchedulerClass(CommonConfigurationKeys.IPC_NAMESPACE, port, conf),
getClientBackoffEnable(CommonConfigurationKeys.IPC_NAMESPACE, port, conf),
maxQueueSize, prefix, conf);
this.secretManager = (SecretManager) secretManager;
this.authorize =
conf.getBoolean(CommonConfigurationKeys.HADOOP_SECURITY_AUTHORIZATION,
false);
// configure supported authentications
this.enabledAuthMethods = getAuthMethods(secretManager, conf);
this.negotiateResponse = buildNegotiateResponse(enabledAuthMethods);
// Start the listener here and let it bind to the port
listener = new Listener(port);
// set the server port to the default listener port.
this.port = listener.getAddress().getPort();
connectionManager = new ConnectionManager();
this.rpcMetrics = RpcMetrics.create(this, conf);
this.rpcDetailedMetrics = RpcDetailedMetrics.create(this.port);
this.tcpNoDelay = conf.getBoolean(
CommonConfigurationKeysPublic.IPC_SERVER_TCPNODELAY_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_TCPNODELAY_DEFAULT);
this.setLogSlowRPC(conf.getBoolean(
CommonConfigurationKeysPublic.IPC_SERVER_LOG_SLOW_RPC,
CommonConfigurationKeysPublic.IPC_SERVER_LOG_SLOW_RPC_DEFAULT));
this.setLogSlowRPCThresholdTime(conf.getLong(
CommonConfigurationKeysPublic.IPC_SERVER_LOG_SLOW_RPC_THRESHOLD_MS_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_LOG_SLOW_RPC_THRESHOLD_MS_DEFAULT));
this.setPurgeIntervalNanos(conf.getInt(
CommonConfigurationKeysPublic.IPC_SERVER_PURGE_INTERVAL_MINUTES_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_PURGE_INTERVAL_MINUTES_DEFAULT));
// Create the responder here
responder = new Responder();
if (secretManager != null || UserGroupInformation.isSecurityEnabled()) {
SaslRpcServer.init(conf);
saslPropsResolver = SaslPropertiesResolver.getInstance(conf);
}
this.exceptionsHandler.addTerseLoggingExceptions(StandbyException.class);
this.exceptionsHandler.addTerseLoggingExceptions(
HealthCheckFailedException.class);
this.metricsUpdaterInterval =
conf.getLong(CommonConfigurationKeysPublic.IPC_SERVER_METRICS_UPDATE_RUNNER_INTERVAL,
CommonConfigurationKeysPublic.IPC_SERVER_METRICS_UPDATE_RUNNER_INTERVAL_DEFAULT);
this.scheduledExecutorService = new ScheduledThreadPoolExecutor(1,
new ThreadFactoryBuilder().setDaemon(true).setNameFormat("Hadoop-Metrics-Updater-%d")
.build());
this.scheduledExecutorService.scheduleWithFixedDelay(new MetricsUpdateRunner(),
metricsUpdaterInterval, metricsUpdaterInterval, TimeUnit.MILLISECONDS);
}
private synchronized void doKerberosRelogin() throws IOException {
if(UserGroupInformation.getLoginUser().isLoginSuccess()){
return;
}
LOG.warn("Initiating re-login from IPC Server");
if (canTryForceLogin.compareAndSet(true, false)) {
if (UserGroupInformation.isLoginKeytabBased()) {
UserGroupInformation.getLoginUser().forceReloginFromKeytab();
} else if (UserGroupInformation.isLoginTicketBased()) {
UserGroupInformation.getLoginUser().forceReloginFromTicketCache();
}
} else {
if (UserGroupInformation.isLoginKeytabBased()) {
UserGroupInformation.getLoginUser().reloginFromKeytab();
} else if (UserGroupInformation.isLoginTicketBased()) {
UserGroupInformation.getLoginUser().reloginFromTicketCache();
}
}
}
public synchronized void addAuxiliaryListener(int auxiliaryPort)
throws IOException {
if (auxiliaryListenerMap == null) {
auxiliaryListenerMap = new HashMap<>();
}
if (auxiliaryListenerMap.containsKey(auxiliaryPort) && auxiliaryPort != 0) {
throw new IOException(
"There is already a listener binding to: " + auxiliaryPort);
}
Listener newListener = new Listener(auxiliaryPort);
newListener.setIsAuxiliary();
// in the case of port = 0, the listener would be on a != 0 port.
LOG.info("Adding a server listener on port " +
newListener.getAddress().getPort());
auxiliaryListenerMap.put(newListener.getAddress().getPort(), newListener);
}
private RpcSaslProto buildNegotiateResponse(List authMethods)
throws IOException {
RpcSaslProto.Builder negotiateBuilder = RpcSaslProto.newBuilder();
if (authMethods.contains(AuthMethod.SIMPLE) && authMethods.size() == 1) {
// SIMPLE-only servers return success in response to negotiate
negotiateBuilder.setState(SaslState.SUCCESS);
} else {
negotiateBuilder.setState(SaslState.NEGOTIATE);
for (AuthMethod authMethod : authMethods) {
SaslRpcServer saslRpcServer = new SaslRpcServer(authMethod);
SaslAuth.Builder builder = negotiateBuilder.addAuthsBuilder()
.setMethod(authMethod.toString())
.setMechanism(saslRpcServer.mechanism);
if (saslRpcServer.protocol != null) {
builder.setProtocol(saslRpcServer.protocol);
}
if (saslRpcServer.serverId != null) {
builder.setServerId(saslRpcServer.serverId);
}
}
}
return negotiateBuilder.build();
}
// get the security type from the conf. implicitly include token support
// if a secret manager is provided, or fail if token is the conf value but
// there is no secret manager
private List getAuthMethods(SecretManager> secretManager,
Configuration conf) {
AuthenticationMethod confAuthenticationMethod =
SecurityUtil.getAuthenticationMethod(conf);
List authMethods = new ArrayList();
if (confAuthenticationMethod == AuthenticationMethod.TOKEN) {
if (secretManager == null) {
throw new IllegalArgumentException(AuthenticationMethod.TOKEN +
" authentication requires a secret manager");
}
} else if (secretManager != null) {
LOG.debug("{} authentication enabled for secret manager", AuthenticationMethod.TOKEN);
// most preferred, go to the front of the line!
authMethods.add(AuthenticationMethod.TOKEN.getAuthMethod());
}
authMethods.add(confAuthenticationMethod.getAuthMethod());
LOG.debug("Server accepts auth methods:{}", authMethods);
return authMethods;
}
private void closeConnection(Connection connection) {
connectionManager.close(connection);
}
/**
* Setup response for the IPC Call.
*
* @param call {@link Call} to which we are setting up the response
* @param status of the IPC call
* @param rv return value for the IPC Call, if the call was successful
* @param errorClass error class, if the the call failed
* @param error error message, if the call failed
* @throws IOException
*/
private void setupResponse(
RpcCall call, RpcStatusProto status, RpcErrorCodeProto erCode,
Writable rv, String errorClass, String error)
throws IOException {
// fatal responses will cause the reader to close the connection.
if (status == RpcStatusProto.FATAL) {
call.connection.setShouldClose();
}
RpcResponseHeaderProto.Builder headerBuilder =
RpcResponseHeaderProto.newBuilder();
headerBuilder.setClientId(ByteString.copyFrom(call.clientId));
headerBuilder.setCallId(call.callId);
headerBuilder.setRetryCount(call.retryCount);
headerBuilder.setStatus(status);
headerBuilder.setServerIpcVersionNum(CURRENT_VERSION);
if (alignmentContext != null) {
alignmentContext.updateResponseState(headerBuilder);
}
if (status == RpcStatusProto.SUCCESS) {
RpcResponseHeaderProto header = headerBuilder.build();
try {
setupResponse(call, header, rv);
} catch (Throwable t) {
LOG.warn("Error serializing call response for call " + call, t);
// Call back to same function - this is OK since the
// buffer is reset at the top, and since status is changed
// to ERROR it won't infinite loop.
setupResponse(call, RpcStatusProto.ERROR,
RpcErrorCodeProto.ERROR_SERIALIZING_RESPONSE,
null, t.getClass().getName(),
StringUtils.stringifyException(t));
return;
}
} else { // Rpc Failure
headerBuilder.setExceptionClassName(errorClass);
headerBuilder.setErrorMsg(error);
headerBuilder.setErrorDetail(erCode);
setupResponse(call, headerBuilder.build(), null);
}
}
private void setupResponse(RpcCall call,
RpcResponseHeaderProto header, Writable rv) throws IOException {
final byte[] response;
if (rv == null || (rv instanceof RpcWritable.ProtobufWrapper)) {
response = setupResponseForProtobuf(header, rv);
} else {
response = setupResponseForWritable(header, rv);
}
if (response.length > maxRespSize) {
LOG.warn("Large response size " + response.length + " for call "
+ call.toString());
}
call.setResponse(ByteBuffer.wrap(response));
}
private byte[] setupResponseForWritable(
RpcResponseHeaderProto header, Writable rv) throws IOException {
ResponseBuffer buf = responseBuffer.get().reset();
try {
RpcWritable.wrap(header).writeTo(buf);
if (rv != null) {
RpcWritable.wrap(rv).writeTo(buf);
}
return buf.toByteArray();
} finally {
// Discard a large buf and reset it back to smaller size
// to free up heap.
if (buf.capacity() > maxRespSize) {
buf.setCapacity(INITIAL_RESP_BUF_SIZE);
}
}
}
// writing to a pre-allocated array is the most efficient way to construct
// a protobuf response.
private byte[] setupResponseForProtobuf(
RpcResponseHeaderProto header, Writable rv) throws IOException {
Message payload = (rv != null)
? ((RpcWritable.ProtobufWrapper)rv).getMessage() : null;
int length = getDelimitedLength(header);
if (payload != null) {
length += getDelimitedLength(payload);
}
byte[] buf = new byte[length + 4];
CodedOutputStream cos = CodedOutputStream.newInstance(buf);
// the stream only supports little endian ints
cos.writeRawByte((byte)((length >>> 24) & 0xFF));
cos.writeRawByte((byte)((length >>> 16) & 0xFF));
cos.writeRawByte((byte)((length >>> 8) & 0xFF));
cos.writeRawByte((byte)((length >>> 0) & 0xFF));
cos.writeUInt32NoTag(header.getSerializedSize());
header.writeTo(cos);
if (payload != null) {
cos.writeUInt32NoTag(payload.getSerializedSize());
payload.writeTo(cos);
}
return buf;
}
private static int getDelimitedLength(Message message) {
int length = message.getSerializedSize();
return length + CodedOutputStream.computeUInt32SizeNoTag(length);
}
/**
* Setup response for the IPC Call on Fatal Error from a
* client that is using old version of Hadoop.
* The response is serialized using the previous protocol's response
* layout.
*
* @param response buffer to serialize the response into
* @param call {@link Call} to which we are setting up the response
* @param rv return value for the IPC Call, if the call was successful
* @param errorClass error class, if the the call failed
* @param error error message, if the call failed
* @throws IOException
*/
private void setupResponseOldVersionFatal(ByteArrayOutputStream response,
RpcCall call,
Writable rv, String errorClass, String error)
throws IOException {
final int OLD_VERSION_FATAL_STATUS = -1;
response.reset();
DataOutputStream out = new DataOutputStream(response);
out.writeInt(call.callId); // write call id
out.writeInt(OLD_VERSION_FATAL_STATUS); // write FATAL_STATUS
WritableUtils.writeString(out, errorClass);
WritableUtils.writeString(out, error);
call.setResponse(ByteBuffer.wrap(response.toByteArray()));
}
private void wrapWithSasl(RpcCall call) throws IOException {
if (call.connection.saslServer != null) {
byte[] token = call.rpcResponse.array();
// synchronization may be needed since there can be multiple Handler
// threads using saslServer to wrap responses.
synchronized (call.connection.saslServer) {
token = call.connection.saslServer.wrap(token, 0, token.length);
}
LOG.debug("Adding saslServer wrapped token of size {} as call response.", token.length);
// rebuild with sasl header and payload
RpcResponseHeaderProto saslHeader = RpcResponseHeaderProto.newBuilder()
.setCallId(AuthProtocol.SASL.callId)
.setStatus(RpcStatusProto.SUCCESS)
.build();
RpcSaslProto saslMessage = RpcSaslProto.newBuilder()
.setState(SaslState.WRAP)
.setToken(ByteString.copyFrom(token))
.build();
setupResponse(call, saslHeader, RpcWritable.wrap(saslMessage));
}
}
Configuration getConf() {
return conf;
}
/**
* Sets the socket buffer size used for responding to RPCs.
* @param size input size.
*/
public void setSocketSendBufSize(int size) { this.socketSendBufferSize = size; }
public void setTracer(Tracer t) {
this.tracer = t;
}
/** Starts the service. Must be called before any calls will be handled. */
public synchronized void start() {
responder.start();
listener.start();
if (auxiliaryListenerMap != null && auxiliaryListenerMap.size() > 0) {
for (Listener newListener : auxiliaryListenerMap.values()) {
newListener.start();
}
}
handlers = new Handler[handlerCount];
for (int i = 0; i < handlerCount; i++) {
handlers[i] = new Handler(i);
handlers[i].start();
}
}
/** Stops the service. No new calls will be handled after this is called. */
public synchronized void stop() {
LOG.info("Stopping server on " + port);
running = false;
if (handlers != null) {
for (int i = 0; i < handlerCount; i++) {
if (handlers[i] != null) {
handlers[i].interrupt();
}
}
}
listener.interrupt();
listener.doStop();
if (auxiliaryListenerMap != null && auxiliaryListenerMap.size() > 0) {
for (Listener newListener : auxiliaryListenerMap.values()) {
newListener.interrupt();
newListener.doStop();
}
}
responder.interrupt();
notifyAll();
shutdownMetricsUpdaterExecutor();
this.rpcMetrics.shutdown();
this.rpcDetailedMetrics.shutdown();
}
private void shutdownMetricsUpdaterExecutor() {
this.scheduledExecutorService.shutdown();
try {
boolean isExecutorShutdown =
this.scheduledExecutorService.awaitTermination(3, TimeUnit.SECONDS);
if (!isExecutorShutdown) {
LOG.info("Hadoop Metrics Updater executor could not be shutdown.");
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
LOG.info("Hadoop Metrics Updater executor shutdown interrupted.", e);
}
}
/**
* Wait for the server to be stopped.
* Does not wait for all subthreads to finish.
* See {@link #stop()}.
* @throws InterruptedException if the thread is interrupted.
*/
public synchronized void join() throws InterruptedException {
while (running) {
wait();
}
}
/**
* Return the socket (ip+port) on which the RPC server is listening to.
* @return the socket (ip+port) on which the RPC server is listening to.
*/
public synchronized InetSocketAddress getListenerAddress() {
return listener.getAddress();
}
/**
* Return the set of all the configured auxiliary socket addresses NameNode
* RPC is listening on. If there are none, or it is not configured at all, an
* empty set is returned.
* @return the set of all the auxiliary addresses on which the
* RPC server is listening on.
*/
public synchronized Set getAuxiliaryListenerAddresses() {
Set allAddrs = new HashSet<>();
if (auxiliaryListenerMap != null && auxiliaryListenerMap.size() > 0) {
for (Listener auxListener : auxiliaryListenerMap.values()) {
allAddrs.add(auxListener.getAddress());
}
}
return allAddrs;
}
/**
* Called for each call.
* @deprecated Use {@link #call(RPC.RpcKind, String,
* Writable, long)} instead
* @param param input param.
* @param receiveTime input receiveTime.
* @throws Exception if any error occurs.
* @return Call
*/
@Deprecated
public Writable call(Writable param, long receiveTime) throws Exception {
return call(RPC.RpcKind.RPC_BUILTIN, null, param, receiveTime);
}
/**
* Called for each call.
* @param rpcKind input rpcKind.
* @param protocol input protocol.
* @param param input param.
* @param receiveTime input receiveTime.
* @return Call.
* @throws Exception raised on errors performing I/O.
*/
public abstract Writable call(RPC.RpcKind rpcKind, String protocol,
Writable param, long receiveTime) throws Exception;
/**
* Authorize the incoming client connection.
*
* @param user client user
* @param protocolName - the protocol
* @param addr InetAddress of incoming connection
* @throws AuthorizationException when the client isn't authorized to talk the protocol
*/
private void authorize(UserGroupInformation user, String protocolName,
InetAddress addr) throws AuthorizationException {
if (authorize) {
if (protocolName == null) {
throw new AuthorizationException("Null protocol not authorized");
}
Class> protocol = null;
try {
protocol = getProtocolClass(protocolName, getConf());
} catch (ClassNotFoundException cfne) {
throw new AuthorizationException("Unknown protocol: " +
protocolName);
}
serviceAuthorizationManager.authorize(user, protocol, getConf(), addr);
}
}
/**
* Get the port on which the IPC Server is listening for incoming connections.
* This could be an ephemeral port too, in which case we return the real
* port on which the Server has bound.
* @return port on which IPC Server is listening
*/
public int getPort() {
return port;
}
/**
* The number of open RPC conections
* @return the number of open rpc connections
*/
public int getNumOpenConnections() {
return connectionManager.size();
}
/**
* @return Get the NumOpenConnections/User.
*/
public String getNumOpenConnectionsPerUser() {
ObjectMapper mapper = new ObjectMapper();
try {
return mapper
.writeValueAsString(connectionManager.getUserToConnectionsMap());
} catch (IOException ignored) {
}
return null;
}
/**
* The number of RPC connections dropped due to
* too many connections.
* @return the number of dropped rpc connections
*/
public long getNumDroppedConnections() {
return connectionManager.getDroppedConnections();
}
/**
* The number of rpc calls in the queue.
* @return The number of rpc calls in the queue.
*/
public int getCallQueueLen() {
return callQueue.size();
}
public boolean isClientBackoffEnabled() {
return callQueue.isClientBackoffEnabled();
}
public void setClientBackoffEnabled(boolean value) {
callQueue.setClientBackoffEnabled(value);
}
@VisibleForTesting
public boolean isServerFailOverEnabled() {
return callQueue.isServerFailOverEnabled();
}
@VisibleForTesting
public boolean isServerFailOverEnabledByQueue() {
return callQueue.isServerFailOverEnabledByQueue();
}
/**
* The maximum size of the rpc call queue of this server.
* @return The maximum size of the rpc call queue.
*/
public int getMaxQueueSize() {
return maxQueueSize;
}
/**
* The number of reader threads for this server.
* @return The number of reader threads.
*/
public int getNumReaders() {
return readThreads;
}
/**
* When the read or write buffer size is larger than this limit, i/o will be
* done in chunks of this size. Most RPC requests and responses would be
* be smaller.
*/
private static int NIO_BUFFER_LIMIT = 8*1024; //should not be more than 64KB.
/**
* This is a wrapper around {@link WritableByteChannel#write(ByteBuffer)}.
* If the amount of data is large, it writes to channel in smaller chunks.
* This is to avoid jdk from creating many direct buffers as the size of
* buffer increases. This also minimizes extra copies in NIO layer
* as a result of multiple write operations required to write a large
* buffer.
*
* @see WritableByteChannel#write(ByteBuffer)
*/
private int channelWrite(WritableByteChannel channel,
ByteBuffer buffer) throws IOException {
int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ?
channel.write(buffer) : channelIO(null, channel, buffer);
if (count > 0) {
rpcMetrics.incrSentBytes(count);
}
return count;
}
/**
* This is a wrapper around {@link ReadableByteChannel#read(ByteBuffer)}.
* If the amount of data is large, it writes to channel in smaller chunks.
* This is to avoid jdk from creating many direct buffers as the size of
* ByteBuffer increases. There should not be any performance degredation.
*
* @see ReadableByteChannel#read(ByteBuffer)
*/
private int channelRead(ReadableByteChannel channel,
ByteBuffer buffer) throws IOException {
int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ?
channel.read(buffer) : channelIO(channel, null, buffer);
if (count > 0) {
rpcMetrics.incrReceivedBytes(count);
}
return count;
}
/**
* Helper for {@link #channelRead(ReadableByteChannel, ByteBuffer)}
* and {@link #channelWrite(WritableByteChannel, ByteBuffer)}. Only
* one of readCh or writeCh should be non-null.
*
* @see #channelRead(ReadableByteChannel, ByteBuffer)
* @see #channelWrite(WritableByteChannel, ByteBuffer)
*/
private static int channelIO(ReadableByteChannel readCh,
WritableByteChannel writeCh,
ByteBuffer buf) throws IOException {
int originalLimit = buf.limit();
int initialRemaining = buf.remaining();
int ret = 0;
while (buf.remaining() > 0) {
try {
int ioSize = Math.min(buf.remaining(), NIO_BUFFER_LIMIT);
buf.limit(buf.position() + ioSize);
ret = (readCh == null) ? writeCh.write(buf) : readCh.read(buf);
if (ret < ioSize) {
break;
}
} finally {
buf.limit(originalLimit);
}
}
int nBytes = initialRemaining - buf.remaining();
return (nBytes > 0) ? nBytes : ret;
}
private class ConnectionManager {
final private AtomicInteger count = new AtomicInteger();
final private AtomicLong droppedConnections = new AtomicLong();
final private Set connections;
/* Map to maintain the statistics per User */
final private Map userToConnectionsMap;
final private Object userToConnectionsMapLock = new Object();
final private Timer idleScanTimer;
final private int idleScanThreshold;
final private int idleScanInterval;
final private int maxIdleTime;
final private int maxIdleToClose;
final private int maxConnections;
ConnectionManager() {
this.idleScanTimer = new Timer(
"IPC Server idle connection scanner for port " + getPort(), true);
this.idleScanThreshold = conf.getInt(
CommonConfigurationKeysPublic.IPC_CLIENT_IDLETHRESHOLD_KEY,
CommonConfigurationKeysPublic.IPC_CLIENT_IDLETHRESHOLD_DEFAULT);
this.idleScanInterval = conf.getInt(
CommonConfigurationKeys.IPC_CLIENT_CONNECTION_IDLESCANINTERVAL_KEY,
CommonConfigurationKeys.IPC_CLIENT_CONNECTION_IDLESCANINTERVAL_DEFAULT);
this.maxIdleTime = 2 * conf.getInt(
CommonConfigurationKeysPublic.IPC_CLIENT_CONNECTION_MAXIDLETIME_KEY,
CommonConfigurationKeysPublic.IPC_CLIENT_CONNECTION_MAXIDLETIME_DEFAULT);
this.maxIdleToClose = conf.getInt(
CommonConfigurationKeysPublic.IPC_CLIENT_KILL_MAX_KEY,
CommonConfigurationKeysPublic.IPC_CLIENT_KILL_MAX_DEFAULT);
this.maxConnections = conf.getInt(
CommonConfigurationKeysPublic.IPC_SERVER_MAX_CONNECTIONS_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_MAX_CONNECTIONS_DEFAULT);
// create a set with concurrency -and- a thread-safe iterator, add 2
// for listener and idle closer threads
this.connections = Collections.newSetFromMap(
new ConcurrentHashMap(
maxQueueSize, 0.75f, readThreads+2));
this.userToConnectionsMap = new ConcurrentHashMap<>();
}
private boolean add(Connection connection) {
boolean added = connections.add(connection);
if (added) {
count.getAndIncrement();
}
return added;
}
private boolean remove(Connection connection) {
boolean removed = connections.remove(connection);
if (removed) {
count.getAndDecrement();
}
return removed;
}
void incrUserConnections(String user) {
synchronized (userToConnectionsMapLock) {
Integer count = userToConnectionsMap.get(user);
if (count == null) {
count = 1;
} else {
count = count + 1;
}
userToConnectionsMap.put(user, count);
}
}
void decrUserConnections(String user) {
synchronized (userToConnectionsMapLock) {
Integer count = userToConnectionsMap.get(user);
if (count == null) {
return;
} else {
count = count - 1;
}
if (count == 0) {
userToConnectionsMap.remove(user);
} else {
userToConnectionsMap.put(user, count);
}
}
}
Map getUserToConnectionsMap() {
return userToConnectionsMap;
}
long getDroppedConnections() {
return droppedConnections.get();
}
int size() {
return count.get();
}
boolean isFull() {
// The check is disabled when maxConnections <= 0.
return ((maxConnections > 0) && (size() >= maxConnections));
}
Connection[] toArray() {
return connections.toArray(new Connection[0]);
}
Connection register(SocketChannel channel, int ingressPort,
boolean isOnAuxiliaryPort) {
if (isFull()) {
return null;
}
Connection connection = new Connection(channel, Time.now(),
ingressPort, isOnAuxiliaryPort);
add(connection);
LOG.debug("Server connection from {}; # active connections: {}; # queued calls: {}.",
connection, size(), callQueue.size());
return connection;
}
boolean close(Connection connection) {
boolean exists = remove(connection);
if (exists) {
if (LOG.isDebugEnabled()) {
LOG.debug("{}: disconnecting client {}. Number of active connections: {}.",
Thread.currentThread().getName(), connection, size());
}
// only close if actually removed to avoid double-closing due
// to possible races
connection.close();
// Remove authorized users only
if (connection.user != null && connection.connectionContextRead) {
decrUserConnections(connection.user.getShortUserName());
}
}
return exists;
}
// synch'ed to avoid explicit invocation upon OOM from colliding with
// timer task firing
synchronized void closeIdle(boolean scanAll) {
long minLastContact = Time.now() - maxIdleTime;
// concurrent iterator might miss new connections added
// during the iteration, but that's ok because they won't
// be idle yet anyway and will be caught on next scan
int closed = 0;
for (Connection connection : connections) {
// stop if connections dropped below threshold unless scanning all
if (!scanAll && size() < idleScanThreshold) {
break;
}
// stop if not scanning all and max connections are closed
if (connection.isIdle() &&
connection.getLastContact() < minLastContact &&
close(connection) &&
!scanAll && (++closed == maxIdleToClose)) {
break;
}
}
}
void closeAll() {
// use a copy of the connections to be absolutely sure the concurrent
// iterator doesn't miss a connection
for (Connection connection : toArray()) {
close(connection);
}
}
void startIdleScan() {
scheduleIdleScanTask();
}
void stopIdleScan() {
idleScanTimer.cancel();
}
private void scheduleIdleScanTask() {
if (!running) {
return;
}
TimerTask idleScanTask = new TimerTask(){
@Override
public void run() {
if (!running) {
return;
}
LOG.debug("{}: task running", Thread.currentThread().getName());
try {
closeIdle(false);
} finally {
// explicitly reschedule so next execution occurs relative
// to the end of this scan, not the beginning
scheduleIdleScanTask();
}
}
};
idleScanTimer.schedule(idleScanTask, idleScanInterval);
}
}
protected int getMaxIdleTime() {
return connectionManager.maxIdleTime;
}
public String getServerName() {
return serverName;
}
/**
* Server metrics updater thread, used to update some metrics on a regular basis.
* For instance, requests per second.
*/
private class MetricsUpdateRunner implements Runnable {
private long lastExecuted = 0;
@Override
public synchronized void run() {
long currentTime = Time.monotonicNow();
if (lastExecuted == 0) {
lastExecuted = currentTime - metricsUpdaterInterval;
}
long currentTotalRequests = totalRequests.sum();
long totalRequestsDiff = currentTotalRequests - lastSeenTotalRequests;
lastSeenTotalRequests = currentTotalRequests;
if ((currentTime - lastExecuted) > 0) {
double totalRequestsPerSecInDouble =
(double) totalRequestsDiff / TimeUnit.MILLISECONDS.toSeconds(
currentTime - lastExecuted);
totalRequestsPerSecond = ((long) totalRequestsPerSecInDouble);
}
lastExecuted = currentTime;
}
}
@VisibleForTesting
CallQueueManager getCallQueue() {
return callQueue;
}
@VisibleForTesting
void setCallQueue(CallQueueManager callQueue) {
this.callQueue = callQueue;
}
@VisibleForTesting
void setRpcRequestClass(Class extends Writable> rpcRequestClass) {
this.rpcRequestClass = rpcRequestClass;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy