org.apache.hadoop.metrics2.util.SampleStat Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.util;
import org.apache.hadoop.classification.InterfaceAudience;
/**
* Helper to compute running sample stats
*/
@InterfaceAudience.Private
public class SampleStat {
private final MinMax minmax = new MinMax();
private long numSamples = 0;
private double mean, s;
/**
* Construct a new running sample stat
*/
public SampleStat() {
mean = 0.0;
s = 0.0;
}
public void reset() {
numSamples = 0;
mean = 0.0;
s = 0.0;
minmax.reset();
}
// We want to reuse the object, sometimes.
void reset(long numSamples1, double mean1, double s1, MinMax minmax1) {
numSamples = numSamples1;
mean = mean1;
s = s1;
minmax.reset(minmax1);
}
/**
* Copy the values to other (saves object creation and gc.)
* @param other the destination to hold our values
*/
public void copyTo(SampleStat other) {
other.reset(numSamples, mean, s, minmax);
}
/**
* Add a sample the running stat.
* @param x the sample number
* @return self
*/
public SampleStat add(double x) {
minmax.add(x);
return add(1, x);
}
/**
* Add some sample and a partial sum to the running stat.
* Note, min/max is not evaluated using this method.
* @param nSamples number of samples
* @param xTotal the partial sum
* @return self
*/
public SampleStat add(long nSamples, double xTotal) {
numSamples += nSamples;
// use the weighted incremental version of Welford's algorithm to get
// numerical stability while treating the samples as being weighted
// by nSamples
// see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
double x = xTotal / nSamples;
double meanOld = mean;
mean += ((double) nSamples / numSamples) * (x - meanOld);
s += nSamples * (x - meanOld) * (x - mean);
return this;
}
/**
* @return the total number of samples
*/
public long numSamples() {
return numSamples;
}
/**
* @return the total of all samples added
*/
public double total() {
return mean * numSamples;
}
/**
* @return the arithmetic mean of the samples
*/
public double mean() {
return numSamples > 0 ? mean : 0.0;
}
/**
* @return the variance of the samples
*/
public double variance() {
return numSamples > 1 ? s / (numSamples - 1) : 0.0;
}
/**
* @return the standard deviation of the samples
*/
public double stddev() {
return Math.sqrt(variance());
}
/**
* @return the minimum value of the samples
*/
public double min() {
return minmax.min();
}
/**
* @return the maximum value of the samples
*/
public double max() {
return minmax.max();
}
@Override
public String toString() {
try {
return "Samples = " + numSamples() +
" Min = " + min() +
" Mean = " + mean() +
" Std Dev = " + stddev() +
" Max = " + max();
} catch (Throwable t) {
return super.toString();
}
}
/**
* Helper to keep running min/max
*/
@SuppressWarnings("PublicInnerClass")
public static class MinMax {
// Float.MAX_VALUE is used rather than Double.MAX_VALUE, even though the
// min and max variables are of type double.
// Float.MAX_VALUE is big enough, and using Double.MAX_VALUE makes
// Ganglia core due to buffer overflow.
// The same reasoning applies to the MIN_VALUE counterparts.
static final double DEFAULT_MIN_VALUE = Float.MAX_VALUE;
static final double DEFAULT_MAX_VALUE = Float.MIN_VALUE;
private double min = DEFAULT_MIN_VALUE;
private double max = DEFAULT_MAX_VALUE;
public void add(double value) {
if (value > max) max = value;
if (value < min) min = value;
}
public double min() { return min; }
public double max() { return max; }
public void reset() {
min = DEFAULT_MIN_VALUE;
max = DEFAULT_MAX_VALUE;
}
public void reset(MinMax other) {
min = other.min();
max = other.max();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy