All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hdfs.server.blockmanagement.DatanodeAdminManager Maven / Gradle / Ivy

There is a newer version: 3.4.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hdfs.server.blockmanagement;

import static com.google.common.base.Preconditions.checkArgument;
import static org.apache.hadoop.util.Time.monotonicNow;

import java.util.AbstractList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.TreeMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hdfs.DFSConfigKeys;
import org.apache.hadoop.hdfs.protocol.DatanodeID;
import org.apache.hadoop.hdfs.server.namenode.INodeId;
import org.apache.hadoop.hdfs.server.namenode.NameNode;
import org.apache.hadoop.hdfs.server.namenode.Namesystem;
import org.apache.hadoop.hdfs.util.CyclicIteration;
import org.apache.hadoop.util.ChunkedArrayList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import com.google.common.util.concurrent.ThreadFactoryBuilder;

/**
 * Manages decommissioning and maintenance state for DataNodes. A background
 * monitor thread periodically checks the status of DataNodes that are
 * decommissioning or entering maintenance state.
 * 

* A DataNode can be decommissioned in a few situations: *

    *
  • If a DN is dead, it is decommissioned immediately.
  • *
  • If a DN is alive, it is decommissioned after all of its blocks * are sufficiently replicated. Merely under-replicated blocks do not * block decommissioning as long as they are above a replication * threshold.
  • *
* In the second case, the DataNode transitions to a DECOMMISSION_INPROGRESS * state and is tracked by the monitor thread. The monitor periodically scans * through the list of insufficiently replicated blocks on these DataNodes to * determine if they can be DECOMMISSIONED. The monitor also prunes this list * as blocks become replicated, so monitor scans will become more efficient * over time. *

* DECOMMISSION_INPROGRESS nodes that become dead do not progress to * DECOMMISSIONED until they become live again. This prevents potential * durability loss for singly-replicated blocks (see HDFS-6791). *

* DataNodes can also be put under maintenance state for any short duration * maintenance operations. Unlike decommissioning, blocks are not always * re-replicated for the DataNodes to enter maintenance state. When the * blocks are replicated at least dfs.namenode.maintenance.replication.min, * DataNodes transition to IN_MAINTENANCE state. Otherwise, just like * decommissioning, DataNodes transition to ENTERING_MAINTENANCE state and * wait for the blocks to be sufficiently replicated and then transition to * IN_MAINTENANCE state. The block replication factor is relaxed for a maximum * of maintenance expiry time. When DataNodes don't transition or join the * cluster back by expiry time, blocks are re-replicated just as in * decommissioning case as to avoid read or write performance degradation. *

* This class depends on the FSNamesystem lock for synchronization. */ @InterfaceAudience.Private public class DatanodeAdminManager { private static final Logger LOG = LoggerFactory.getLogger(DatanodeAdminManager.class); private final Namesystem namesystem; private final BlockManager blockManager; private final HeartbeatManager hbManager; private final ScheduledExecutorService executor; /** * Map containing the DECOMMISSION_INPROGRESS or ENTERING_MAINTENANCE * datanodes that are being tracked so they can be be marked as * DECOMMISSIONED or IN_MAINTENANCE. Even after the node is marked as * IN_MAINTENANCE, the node remains in the map until * maintenance expires checked during a monitor tick. *

* This holds a set of references to the under-replicated blocks on the DN at * the time the DN is added to the map, i.e. the blocks that are preventing * the node from being marked as decommissioned. During a monitor tick, this * list is pruned as blocks becomes replicated. *

* Note also that the reference to the list of under-replicated blocks * will be null on initial add *

* However, this map can become out-of-date since it is not updated by block * reports or other events. Before being finally marking as decommissioned, * another check is done with the actual block map. */ private final TreeMap> outOfServiceNodeBlocks; /** * Tracking a node in outOfServiceNodeBlocks consumes additional memory. To * limit the impact on NN memory consumption, we limit the number of nodes in * outOfServiceNodeBlocks. Additional nodes wait in pendingNodes. */ private final Queue pendingNodes; private Monitor monitor = null; DatanodeAdminManager(final Namesystem namesystem, final BlockManager blockManager, final HeartbeatManager hbManager) { this.namesystem = namesystem; this.blockManager = blockManager; this.hbManager = hbManager; executor = Executors.newScheduledThreadPool(1, new ThreadFactoryBuilder().setNameFormat("DatanodeAdminMonitor-%d") .setDaemon(true).build()); outOfServiceNodeBlocks = new TreeMap<>(); pendingNodes = new LinkedList<>(); } /** * Start the DataNode admin monitor thread. * @param conf */ void activate(Configuration conf) { final int intervalSecs = conf.getInt(DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_INTERVAL_KEY, DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_INTERVAL_DEFAULT); checkArgument(intervalSecs >= 0, "Cannot set a negative " + "value for " + DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_INTERVAL_KEY); // By default, the new configuration key overrides the deprecated one. // No # node limit is set. int blocksPerInterval = conf.getInt( DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_BLOCKS_PER_INTERVAL_KEY, DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_BLOCKS_PER_INTERVAL_DEFAULT); int nodesPerInterval = Integer.MAX_VALUE; // If the expected key isn't present and the deprecated one is, // use the deprecated one into the new one. This overrides the // default. // // Also print a deprecation warning. final String deprecatedKey = "dfs.namenode.decommission.nodes.per.interval"; final String strNodes = conf.get(deprecatedKey); if (strNodes != null) { nodesPerInterval = Integer.parseInt(strNodes); blocksPerInterval = Integer.MAX_VALUE; LOG.warn("Deprecated configuration key {} will be ignored.", deprecatedKey); LOG.warn("Please update your configuration to use {} instead.", DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_BLOCKS_PER_INTERVAL_KEY); } checkArgument(blocksPerInterval > 0, "Must set a positive value for " + DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_BLOCKS_PER_INTERVAL_KEY); final int maxConcurrentTrackedNodes = conf.getInt( DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_MAX_CONCURRENT_TRACKED_NODES, DFSConfigKeys .DFS_NAMENODE_DECOMMISSION_MAX_CONCURRENT_TRACKED_NODES_DEFAULT); checkArgument(maxConcurrentTrackedNodes >= 0, "Cannot set a negative " + "value for " + DFSConfigKeys.DFS_NAMENODE_DECOMMISSION_MAX_CONCURRENT_TRACKED_NODES); monitor = new Monitor(blocksPerInterval, nodesPerInterval, maxConcurrentTrackedNodes); executor.scheduleWithFixedDelay(monitor, intervalSecs, intervalSecs, TimeUnit.SECONDS); LOG.debug("Activating DatanodeAdminManager with interval {} seconds, " + "{} max blocks per interval, " + "{} max concurrently tracked nodes.", intervalSecs, blocksPerInterval, nodesPerInterval, maxConcurrentTrackedNodes); } /** * Stop the admin monitor thread, waiting briefly for it to terminate. */ void close() { executor.shutdownNow(); try { executor.awaitTermination(3000, TimeUnit.MILLISECONDS); } catch (InterruptedException e) {} } /** * Start decommissioning the specified datanode. * @param node */ @VisibleForTesting public void startDecommission(DatanodeDescriptor node) { if (!node.isDecommissionInProgress() && !node.isDecommissioned()) { // Update DN stats maintained by HeartbeatManager hbManager.startDecommission(node); // hbManager.startDecommission will set dead node to decommissioned. if (node.isDecommissionInProgress()) { for (DatanodeStorageInfo storage : node.getStorageInfos()) { LOG.info("Starting decommission of {} {} with {} blocks", node, storage, storage.numBlocks()); } node.getLeavingServiceStatus().setStartTime(monotonicNow()); pendingNodes.add(node); } } else { LOG.trace("startDecommission: Node {} in {}, nothing to do." + node, node.getAdminState()); } } /** * Stop decommissioning the specified datanode. * @param node */ @VisibleForTesting public void stopDecommission(DatanodeDescriptor node) { if (node.isDecommissionInProgress() || node.isDecommissioned()) { // Update DN stats maintained by HeartbeatManager hbManager.stopDecommission(node); // Over-replicated blocks will be detected and processed when // the dead node comes back and send in its full block report. if (node.isAlive()) { blockManager.processExtraRedundancyBlocksOnInService(node); } // Remove from tracking in DatanodeAdminManager pendingNodes.remove(node); outOfServiceNodeBlocks.remove(node); } else { LOG.trace("stopDecommission: Node {} in {}, nothing to do." + node, node.getAdminState()); } } /** * Start maintenance of the specified datanode. * @param node */ @VisibleForTesting public void startMaintenance(DatanodeDescriptor node, long maintenanceExpireTimeInMS) { // Even if the node is already in maintenance, we still need to adjust // the expiration time. node.setMaintenanceExpireTimeInMS(maintenanceExpireTimeInMS); if (!node.isMaintenance()) { // Update DN stats maintained by HeartbeatManager hbManager.startMaintenance(node); // hbManager.startMaintenance will set dead node to IN_MAINTENANCE. if (node.isEnteringMaintenance()) { for (DatanodeStorageInfo storage : node.getStorageInfos()) { LOG.info("Starting maintenance of {} {} with {} blocks", node, storage, storage.numBlocks()); } node.getLeavingServiceStatus().setStartTime(monotonicNow()); } // Track the node regardless whether it is ENTERING_MAINTENANCE or // IN_MAINTENANCE to support maintenance expiration. pendingNodes.add(node); } else { LOG.trace("startMaintenance: Node {} in {}, nothing to do." + node, node.getAdminState()); } } /** * Stop maintenance of the specified datanode. * @param node */ @VisibleForTesting public void stopMaintenance(DatanodeDescriptor node) { if (node.isMaintenance()) { // Update DN stats maintained by HeartbeatManager hbManager.stopMaintenance(node); // extra redundancy blocks will be detected and processed when // the dead node comes back and send in its full block report. if (!node.isAlive()) { // The node became dead when it was in maintenance, at which point // the replicas weren't removed from block maps. // When the node leaves maintenance, the replicas should be removed // from the block maps to trigger the necessary replication to // maintain the safety property of "# of live replicas + maintenance // replicas" >= the expected redundancy. blockManager.removeBlocksAssociatedTo(node); } else { // Even though putting nodes in maintenance node doesn't cause live // replicas to match expected replication factor, it is still possible // to have over replicated when the node leaves maintenance node. // First scenario: // a. Node became dead when it is at AdminStates.NORMAL, thus // block is replicated so that 3 replicas exist on other nodes. // b. Admins put the dead node into maintenance mode and then // have the node rejoin the cluster. // c. Take the node out of maintenance mode. // Second scenario: // a. With replication factor 3, set one replica to maintenance node, // thus block has 1 maintenance replica and 2 live replicas. // b. Change the replication factor to 2. The block will still have // 1 maintenance replica and 2 live replicas. // c. Take the node out of maintenance mode. blockManager.processExtraRedundancyBlocksOnInService(node); } // Remove from tracking in DatanodeAdminManager pendingNodes.remove(node); outOfServiceNodeBlocks.remove(node); } else { LOG.trace("stopMaintenance: Node {} in {}, nothing to do." + node, node.getAdminState()); } } private void setDecommissioned(DatanodeDescriptor dn) { dn.setDecommissioned(); LOG.info("Decommissioning complete for node {}", dn); } private void setInMaintenance(DatanodeDescriptor dn) { dn.setInMaintenance(); LOG.info("Node {} has entered maintenance mode.", dn); } /** * Checks whether a block is sufficiently replicated/stored for * DECOMMISSION_INPROGRESS or ENTERING_MAINTENANCE datanodes. For replicated * blocks or striped blocks, full-strength replication or storage is not * always necessary, hence "sufficient". * @return true if sufficient, else false. */ private boolean isSufficientlyReplicated(BlockInfo block, BlockCollection bc, NumberReplicas numberReplicas, boolean isDecommission, boolean isMaintenance) { if (blockManager.hasEnoughEffectiveReplicas(block, numberReplicas, 0)) { // Block has enough replica, skip LOG.trace("Block {} does not need replication.", block); return true; } final int numExpected = blockManager.getExpectedLiveRedundancyNum(block, numberReplicas); final int numLive = numberReplicas.liveReplicas(); // Block is under-replicated LOG.trace("Block {} numExpected={}, numLive={}", block, numExpected, numLive); if (isDecommission && numExpected > numLive) { if (bc.isUnderConstruction() && block.equals(bc.getLastBlock())) { // Can decom a UC block as long as there will still be minReplicas if (numLive >= blockManager.minReplication) { LOG.trace("UC block {} sufficiently-replicated since numLive ({}) " + ">= minR ({})", block, numLive, blockManager.minReplication); return true; } else { LOG.trace("UC block {} insufficiently-replicated since numLive " + "({}) < minR ({})", block, numLive, blockManager.minReplication); } } else { // Can decom a non-UC as long as the default replication is met if (numLive >= blockManager.defaultReplication) { return true; } } } if (isMaintenance && numLive >= blockManager.getMinReplicationToBeInMaintenance()) { return true; } return false; } private static void logBlockReplicationInfo(BlockInfo block, BlockCollection bc, DatanodeDescriptor srcNode, NumberReplicas num, Iterable storages) { if (!NameNode.blockStateChangeLog.isInfoEnabled()) { return; } int curReplicas = num.liveReplicas(); int curExpectedReplicas = block.getReplication(); StringBuilder nodeList = new StringBuilder(); for (DatanodeStorageInfo storage : storages) { final DatanodeDescriptor node = storage.getDatanodeDescriptor(); nodeList.append(node); nodeList.append(" "); } NameNode.blockStateChangeLog.info( "Block: " + block + ", Expected Replicas: " + curExpectedReplicas + ", live replicas: " + curReplicas + ", corrupt replicas: " + num.corruptReplicas() + ", decommissioned replicas: " + num.decommissioned() + ", decommissioning replicas: " + num.decommissioning() + ", maintenance replicas: " + num.maintenanceReplicas() + ", live entering maintenance replicas: " + num.liveEnteringMaintenanceReplicas() + ", excess replicas: " + num.excessReplicas() + ", Is Open File: " + bc.isUnderConstruction() + ", Datanodes having this block: " + nodeList + ", Current Datanode: " + srcNode + ", Is current datanode decommissioning: " + srcNode.isDecommissionInProgress() + ", Is current datanode entering maintenance: " + srcNode.isEnteringMaintenance()); } @VisibleForTesting public int getNumPendingNodes() { return pendingNodes.size(); } @VisibleForTesting public int getNumTrackedNodes() { return outOfServiceNodeBlocks.size(); } @VisibleForTesting public int getNumNodesChecked() { return monitor.numNodesChecked; } /** * Checks to see if datanodes have finished DECOMMISSION_INPROGRESS or * ENTERING_MAINTENANCE state. *

* Since this is done while holding the namesystem lock, * the amount of work per monitor tick is limited. */ private class Monitor implements Runnable { /** * The maximum number of blocks to check per tick. */ private final int numBlocksPerCheck; /** * The maximum number of nodes to check per tick. */ private final int numNodesPerCheck; /** * The maximum number of nodes to track in decomNodeBlocks. A value of 0 * means no limit. */ private final int maxConcurrentTrackedNodes; /** * The number of blocks that have been checked on this tick. */ private int numBlocksChecked = 0; /** * The number of blocks checked after (re)holding lock. */ private int numBlocksCheckedPerLock = 0; /** * The number of nodes that have been checked on this tick. Used for * testing. */ private int numNodesChecked = 0; /** * The last datanode in outOfServiceNodeBlocks that we've processed. */ private DatanodeDescriptor iterkey = new DatanodeDescriptor( new DatanodeID("", "", "", 0, 0, 0, 0)); Monitor(int numBlocksPerCheck, int numNodesPerCheck, int maxConcurrentTrackedNodes) { this.numBlocksPerCheck = numBlocksPerCheck; this.numNodesPerCheck = numNodesPerCheck; this.maxConcurrentTrackedNodes = maxConcurrentTrackedNodes; } private boolean exceededNumBlocksPerCheck() { LOG.trace("Processed {} blocks so far this tick", numBlocksChecked); return numBlocksChecked >= numBlocksPerCheck; } @Deprecated private boolean exceededNumNodesPerCheck() { LOG.trace("Processed {} nodes so far this tick", numNodesChecked); return numNodesChecked >= numNodesPerCheck; } @Override public void run() { LOG.debug("DatanodeAdminMonitor is running."); if (!namesystem.isRunning()) { LOG.info("Namesystem is not running, skipping " + "decommissioning/maintenance checks."); return; } // Reset the checked count at beginning of each iteration numBlocksChecked = 0; numBlocksCheckedPerLock = 0; numNodesChecked = 0; // Check decommission or maintenance progress. namesystem.writeLock(); try { processPendingNodes(); check(); } catch (Exception e) { LOG.warn("DatanodeAdminMonitor caught exception when processing node.", e); } finally { namesystem.writeUnlock(); } if (numBlocksChecked + numNodesChecked > 0) { LOG.info("Checked {} blocks and {} nodes this tick", numBlocksChecked, numNodesChecked); } } /** * Pop datanodes off the pending list and into decomNodeBlocks, * subject to the maxConcurrentTrackedNodes limit. */ private void processPendingNodes() { while (!pendingNodes.isEmpty() && (maxConcurrentTrackedNodes == 0 || outOfServiceNodeBlocks.size() < maxConcurrentTrackedNodes)) { outOfServiceNodeBlocks.put(pendingNodes.poll(), null); } } private void check() { final Iterator>> it = new CyclicIteration<>(outOfServiceNodeBlocks, iterkey).iterator(); final LinkedList toRemove = new LinkedList<>(); while (it.hasNext() && !exceededNumBlocksPerCheck() && !exceededNumNodesPerCheck() && namesystem.isRunning()) { numNodesChecked++; final Map.Entry> entry = it.next(); final DatanodeDescriptor dn = entry.getKey(); try { AbstractList blocks = entry.getValue(); boolean fullScan = false; if (dn.isMaintenance() && dn.maintenanceExpired()) { // If maintenance expires, stop tracking it. stopMaintenance(dn); toRemove.add(dn); continue; } if (dn.isInMaintenance()) { // The dn is IN_MAINTENANCE and the maintenance hasn't expired yet. continue; } if (blocks == null) { // This is a newly added datanode, run through its list to schedule // under-replicated blocks for replication and collect the blocks // that are insufficiently replicated for further tracking LOG.debug("Newly-added node {}, doing full scan to find " + "insufficiently-replicated blocks.", dn); blocks = handleInsufficientlyReplicated(dn); outOfServiceNodeBlocks.put(dn, blocks); fullScan = true; } else { // This is a known datanode, check if its # of insufficiently // replicated blocks has dropped to zero and if it can move // to the next state. LOG.debug("Processing {} node {}", dn.getAdminState(), dn); pruneSufficientlyReplicated(dn, blocks); } if (blocks.size() == 0) { if (!fullScan) { // If we didn't just do a full scan, need to re-check with the // full block map. // // We've replicated all the known insufficiently replicated // blocks. Re-check with the full block map before finally // marking the datanode as DECOMMISSIONED or IN_MAINTENANCE. LOG.debug("Node {} has finished replicating current set of " + "blocks, checking with the full block map.", dn); blocks = handleInsufficientlyReplicated(dn); outOfServiceNodeBlocks.put(dn, blocks); } // If the full scan is clean AND the node liveness is okay, // we can finally mark as DECOMMISSIONED or IN_MAINTENANCE. final boolean isHealthy = blockManager.isNodeHealthyForDecommissionOrMaintenance(dn); if (blocks.size() == 0 && isHealthy) { if (dn.isDecommissionInProgress()) { setDecommissioned(dn); toRemove.add(dn); } else if (dn.isEnteringMaintenance()) { // IN_MAINTENANCE node remains in the outOfServiceNodeBlocks to // to track maintenance expiration. setInMaintenance(dn); } else { Preconditions.checkState(false, "Node %s is in an invalid state! " + "Invalid state: %s %s blocks are on this dn.", dn, dn.getAdminState(), blocks.size()); } LOG.debug("Node {} is sufficiently replicated and healthy, " + "marked as {}.", dn.getAdminState()); } else { LOG.debug("Node {} {} healthy." + " It needs to replicate {} more blocks." + " {} is still in progress.", dn, isHealthy ? "is" : "isn't", blocks.size(), dn.getAdminState()); } } else { LOG.debug("Node {} still has {} blocks to replicate " + "before it is a candidate to finish {}.", dn, blocks.size(), dn.getAdminState()); } iterkey = dn; } catch (Exception e) { // Log and postpone to process node when meet exception since it is in // an invalid state. LOG.warn("DatanodeAdminMonitor caught exception when processing node " + "{}.", dn, e); pendingNodes.add(dn); toRemove.add(dn); } finally { iterkey = dn; } } // Remove the datanodes that are DECOMMISSIONED or in service after // maintenance expiration. for (DatanodeDescriptor dn : toRemove) { Preconditions.checkState(dn.isDecommissioned() || dn.isInService(), "Removing node %s that is not yet decommissioned or in service!", dn); outOfServiceNodeBlocks.remove(dn); } } /** * Removes sufficiently replicated blocks from the block list of a * datanode. */ private void pruneSufficientlyReplicated(final DatanodeDescriptor datanode, AbstractList blocks) { processBlocksInternal(datanode, blocks.iterator(), null, true); } /** * Returns a list of blocks on a datanode that are insufficiently * replicated or require recovery, i.e. requiring recovery and * should prevent decommission or maintenance. *

* As part of this, it also schedules replication work for * any under-replicated blocks. * * @param datanode * @return List of insufficiently replicated blocks */ private AbstractList handleInsufficientlyReplicated( final DatanodeDescriptor datanode) { AbstractList insufficient = new ChunkedArrayList<>(); processBlocksInternal(datanode, datanode.getBlockIterator(), insufficient, false); return insufficient; } /** * Used while checking if DECOMMISSION_INPROGRESS datanodes can be * marked as DECOMMISSIONED or ENTERING_MAINTENANCE datanodes can be * marked as IN_MAINTENANCE. Combines shared logic of pruneReliableBlocks * and handleInsufficientlyStored. * * @param datanode Datanode * @param it Iterator over the blocks on the * datanode * @param insufficientlyReplicated Return parameter. If it's not null, * will contain the insufficiently * replicated-blocks from the list. * @param pruneSufficientlyReplicated whether to remove sufficiently * replicated blocks from the iterator * @return true if there are under-replicated blocks in the provided block * iterator, else false. */ private void processBlocksInternal( final DatanodeDescriptor datanode, final Iterator it, final List insufficientlyReplicated, boolean pruneSufficientlyReplicated) { boolean firstReplicationLog = true; int underReplicatedBlocks = 0; // All maintenance and decommission replicas. int outOfServiceOnlyReplicas = 0; // Low redundancy in UC Blocks only int underReplicatedInOpenFiles = 0; while (it.hasNext()) { if (insufficientlyReplicated == null && numBlocksCheckedPerLock >= numBlocksPerCheck) { // During fullscan insufficientlyReplicated will NOT be null, iterator // will be DN's iterator. So should not yield lock, otherwise // ConcurrentModificationException could occur. // Once the fullscan done, iterator will be a copy. So can yield the // lock. // Yielding is required in case of block number is greater than the // configured per-iteration-limit. namesystem.writeUnlock(); try { LOG.debug("Yielded lock during decommission/maintenance check"); Thread.sleep(0, 500); } catch (InterruptedException ignored) { return; } // reset numBlocksCheckedPerLock = 0; namesystem.writeLock(); } numBlocksChecked++; numBlocksCheckedPerLock++; final BlockInfo block = it.next(); // Remove the block from the list if it's no longer in the block map, // e.g. the containing file has been deleted if (blockManager.blocksMap.getStoredBlock(block) == null) { LOG.trace("Removing unknown block {}", block); it.remove(); continue; } long bcId = block.getBlockCollectionId(); if (bcId == INodeId.INVALID_INODE_ID) { // Orphan block, will be invalidated eventually. Skip. continue; } final BlockCollection bc = blockManager.getBlockCollection(block); final NumberReplicas num = blockManager.countNodes(block); final int liveReplicas = num.liveReplicas(); final int curReplicas = liveReplicas; // Schedule under-replicated blocks for replication if not already // pending boolean isDecommission = datanode.isDecommissionInProgress(); boolean isMaintenance = datanode.isEnteringMaintenance(); boolean neededReplication = isDecommission ? blockManager.isNeededReplication(block, num) : blockManager.isNeededReplicationForMaintenance(block, num); if (neededReplication) { if (!blockManager.neededReplications.contains(block) && blockManager.pendingReplications.getNumReplicas(block) == 0 && blockManager.isPopulatingReplQueues()) { // Process these blocks only when active NN is out of safe mode. blockManager.neededReplications.add(block, liveReplicas, num.readOnlyReplicas(), num.outOfServiceReplicas(), block.getReplication()); } } // Even if the block is under-replicated, // it doesn't block decommission if it's sufficiently replicated if (isSufficientlyReplicated(block, bc, num, isDecommission, isMaintenance)) { if (pruneSufficientlyReplicated) { it.remove(); } continue; } // We've found an insufficiently replicated block. if (insufficientlyReplicated != null) { insufficientlyReplicated.add(block); } // Log if this is our first time through if (firstReplicationLog) { logBlockReplicationInfo(block, bc, datanode, num, blockManager.blocksMap.getStorages(block)); firstReplicationLog = false; } // Update various counts underReplicatedBlocks++; if (bc.isUnderConstruction()) { underReplicatedInOpenFiles++; } if ((curReplicas == 0) && (num.outOfServiceReplicas() > 0)) { outOfServiceOnlyReplicas++; } } datanode.getLeavingServiceStatus().set(underReplicatedBlocks, outOfServiceOnlyReplicas, underReplicatedInOpenFiles); } } @VisibleForTesting void runMonitorForTest() throws ExecutionException, InterruptedException { executor.submit(monitor).get(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy